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Quantum Enhancement of Momentum Diffusion in the Delta-Kicked Rotor
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We present detailed observations of the quantum delta-kicked rotor in the vicinity of a quantum reso-
nance. Our experiment consists of an ensemble of cold cesium atoms subject to a pulsed off-resonant
standing wave of light. We measure the mean energy and show clearly that at the quantum resonance it
is a local maximum. We also examine the effect of noise on the system and find that the greatest sensi-
tivity to this occurs at the resonances. This makes these regions ideal for examining quantum-classical
correspondence. A picture based on diffraction is developed which allows the experiments to be readily

understood.
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The delta-kicked rotor is one of the most extensively in-
vestigated systems in the field of classical chaos theory [1].
It consists of a particle which is periodically given kicks
whose size and direction depend upon the position of the
particle. Such a system displays a wealth of phenomena
ranging from regular motion to the anomalous diffusion
associated with accelerator modes. It is also extremely in-
teresting from the perspective of quantum chaos because
of the simplicity of the equations of motion, the existence
of a readily obtainable experimental realization [2,3], and
the fact that it is a promising candidate for investigating
quantum-classical correspondence. In the quantum case
the classical particle is replaced with a de Broglie wave
and the delta kicks are provided by a pulsed corrugated
potential.

Perhaps one of the most striking aspects of the quantum
delta-kicked rotor’s (QDKR) behavior is the existence of
quantum resonances [4]. The primary quantum resonances
occur for kicking intervals which allow plane waves with
certain initial momenta in the kicking direction to experi-
ence no overall evolution in the time between the kicks.
The momentum distribution of the wave function under
these conditions should exhibit ballistic growth in its width
as the number of kicking pulses is increased. Contrary to
expectation, the first experiments on the QDKR near to a
quantum resonance showed no ballistic growth in the mo-
mentum [2]. Although subsequent work [5] has demon-
strated that this observation was due to a lack of temporal
resolution, there still remains much to be done to fully un-
derstand this resonant behavior.

In this Letter we experimentally examine the behavior of
the QDKR in the vicinity of the quantum resonances using
an ensemble of laser cooled cesium atoms exposed to a
pulsed off-resonant standing wave of light [6]. Because of
a gradient in the potential formed by the ac-stark shift, the
atoms experience kicks of a size which depends on their
position in the standing wave. Figure 1 shows momentum
distributions of the ensemble measured using a time-of-
flight technique for different pulse separations. Note how
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the distributions become much wider for a small range
of times around the quantum resonances at 66, 133, and
200 ws. These features are also well resolved in the mean
kinetic energy (henceforth referred to as the mean energy)
plots of Fig. 2(a).

In addition we subject the system to a source of noise (in
effect a “shaking” of the potential) so that we can investi-
gate what happens when we move towards a more classical
regime [3]. Figure 2 shows the mean energy as a function
of the time between pulses when we introduce this shaking
by causing the atoms to spontaneously emit a photon with
various degrees of probability. In this situation we find
that the mean energy at the quantum resonances increases
significantly even for small amounts of spontaneous emis-
sion. On the other hand, at pulse intervals slightly above
and below the resonance, the mean energy increases at a
much slower rate until the mean number of added spon-
taneous emissions per pulse is greater than 0.2. As we
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FIG. 1. Experimental momentum distributions of an ensemble

of cold cesium atoms subjected to 30 kicks from an off-resonant
standing light wave. The horizontal axis represents the time
between the kicks. Note the sharp resonances seen at 66, 133,
and 200 us.
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FIG. 2. Experimental data of the mean energy as a function of
the time between pulses, 7', after 30 pulses. Graphs (a), (b), and
(c) have a mean number of added spontaneous emissions per
pulse of 0, 0.1, and 0.2, respectively, and a phase modulation
depth of ¢, = 7. Note the periodicity of the mean energy
and the dips with central sharp peaks at 66, 133, and 200 us.
These are the quantum resonances. Inset of (a) shows a higher
resolution scan around the resonance at 66 us.

will show, the pulse intervals at which the wave function
is most sensitive to the shaking correspond to where the
wave function is the most delocalized, that is, in a sense
the most quantum.

The pulsed standing wave of off-resonant laser light
used to create the corrugated potential had the form
Ux,t) = U%[l + cos(Gx)]przl F(t — N,T), where
x is the position in the direction of the standing wave, N is

the total number of pulses, G = 2k, (k. is the light wave

vector), and Upax = % is the modulation depth of the

potential ({) is the Rabi frequency of the transition, A is
the detuning from resonance). The summation denotes a
series of rectangular pulses F, of duration 7, separated in
time by 7. We define the depth of the phase modulation
induced by the potential after one pulse as ¢, = U"z’“,;t”.
One picture which can be employed to understand the
structures of Fig. 2 is that of diffraction. The interaction
of a de Broglie wave with a periodic potential is equivalent
to diffraction from a phase grating. Since the pulse length
is very short, the evolution of the atomic wave function
during the interaction is negligible and we are in the
Raman-Nath regime of a thin grating. For an initial plane
de Broglie wave the amplitude for diffraction into the nth
order exp[i % x] is (—i)"J,(¢4), where p, = p; + nhG
and p; is the momentum of the initial plane wave along the
standing wave. We can represent the standing wave inter-
action and the free propagation during time ¢ by the unitary
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transformations UM = (—i)* " ],_,(p4)lm){n| and
Ufree — expli¢pire(t)]8,unlm) (n|, where m and n are the

T : 1 p2
final and initial diffraction orders, and ¢/™(¢) = 4t

(M 1is the mass of the atom). These two transformations
applied in the appropriate sequence enable us to model
numerically the effect of any number of pulses on a
particular incident atomic plane wave. In order to find
the overall momentum distribution, this calculation is
performed for each of the plane waves present in the
initial distribution. The final result is the weighted sum of
all the output momentum distributions.

One particularly important quantity is the difference
in the free propagation phase acquired by the nth and
(n — 1)th diffraction orders between consecutizve kicks,
$r(T) — $=N(T) = [2n — 1) + 246155 T (6]
When the nonbracketed component of this equation is
equal to 277, the time between the pulses is of special sig-
nificance. This is the Talbot time and is given by Traibot =
Wg—gz, which for cesium is 133 ws. Quantum resonances
will occur whenever it is possible for the above phase
difference to be a multiple of 277. At the Talbot time
this condition can be fulfilled by all momenta which
are a multiple or half-multiple of AG. At % it is
only half-multiples of iG which will work. For these
special combinations of time and momentum the free
evolution leaves the wave function unchanged. Thus N
standing wave pulses have the effect of one large pulse
with a phase modulation depth of N¢,. The properties
of the Bessel functions imply that the diffraction orders
populated with the greatest probability have a momentum
*N@, hG, so that the mean energy is proportional to
N?2. The last observation is the one which is most often
associated with a quantum resonance [4] and explains the
sharp peaks at 66, 133, and 200 us in Fig. 2(a). This is
quantum enhancement of momentum diffusion caused by
the relatively small fraction of atoms which have one of
the special momenta mentioned above.

Why do these peaks grow relative to their surroundings
as the amount of spontaneous emission is increased? To
answer this question we consider the case where the pulse
interval is Trape (note that similar arguments could be
applied to any resonance time). We also take the initial
momentum to have the form p; = r/qhG, where r and ¢
are integers. The evolution is clearer if we move to the ref-
erence frame in which the grating is moving with velocity
Vgrat = — j[(—,, Thus we can ignore the free evolution of the
wave field and instead take the potential to have been spa-
tially offset by an amount —£+T during the time between
the pulses. After ¢ pulses the sum of the offset standing
wave pulses has no spatial dependence and hence can pro-
duce no diffraction [7]. In other words after g pulses the
atomic de Broglie wave is just the input wave to within
some constant phase factor. Thus, an incident plane wave
with momentum r/q/G will have an oscillatory mean en-
ergy with minima every g pulses. Since any incident mo-
mentum can be approximated to a number with such a
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rational form we expect that mean energy growth should be
dramatically inhibited by these oscillations. Increasing the
amount of spontaneous emission will destroy the special
rephasing conditions which allow the mean energy to os-
cillate. Thus even a small amount of spontaneous emission
should produce a significant increase in mean energy.
The other notable feature of the mean energy plots of
Fig. 2 is the way in which the minima on either side of
the quantum resonance peak show only small increases in
mean energy as spontaneous emission is applied. This can
be explained by considering Fig. 3, the theoretical wave
field plot after one pulse for an incident plane wave with
no momentum parallel to the standing wave. It can be seen
that at the times corresponding to each quantum resonance
the amplitude has no spatial variation (there is only phase
modulation), while to either side the wave field is peri-
odically localized. For plane waves with other incident
momenta the whole wave field will be offset by an amount
P-t, where t is the time since the light pulse. In this gen-
eral situation, the region of localization will no longer be
where the standing wave gradient is zero, however due to
the localization of the wave packet it effectively experi-
ences a single value of the standing wave gradient. When
the next pulse is applied it will be deflected in a way which
allows it to largely maintain its form. If a spontaneous
emission occurs, this offsets the wave function to a point
where there is a different phase gradient. Thus although
the wave packet will not be deflected by the same amount
at the next pulse, it will keep the same shape and should
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FIG. 3. The theoretical atomic wave field probability (proba-
bility proportional to darkness of shading) as a function of time
after one pulse of a periodic potential with ¢, = 7. The inci-
dent wave packet was a plane wave with no momentum parallel
to the standing light wave. Note the lack of any amplitude varia-
tion where the quantum resonances are located at 0, 66, and
133 ws. On either side of these regions a pronounced localiza-
tion of the wave function occurs. The position of the standing
light wave is also plotted.
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exhibit the diffusive behavior which is more characteristic
of a classical particle.

Figure 4 shows experimental and theoretical mean en-
ergy plots for a whole ensemble of initial momenta as a
function of the number of pulses with no additional spon-
taneous emission. Several significant features can be iden-
tified. First, dynamical localization [8], where the mean
energy initially increases linearly and then saturates, is ob-
served at 7 = 61 us, the time where the deep minima near
the quantum resonance of Fig. 2 exist. AtT = 20 us, dy-
namical localization should also occur, although this will
take many more pulses than we were able to apply in the
experiment.

Interestingly the 66 us case, at one of the quantum reso-
nances, undergoes a type of damped oscillation. As might
be expected from earlier discussions, this shape is char-
acteristic of a function which consists of many oscillating
curves all with different frequencies. Although there is
reasonable qualitative agreement between the theory and
the experiment, there are still significant differences. This
is especially true at 66 us, where the discrepancies are
caused primarily by limits on signal to noise. Here a large
part of the mean energy is the result of the small amount
of population at high momentum. With a limited signal-to-
noise ratio it is not possible to detect all of this population
and consequently the mean energy determined by the ex-
periment is lower.

In Fig. 5 the effect of small amounts of added sponta-
neous emission is examined. This additional noise greatly
modifies the behavior at the quantum resonance of 7' =
66 us, yet has a much smaller effect on the 61 s data
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FIG. 4. The experimental (a) and the theoretical (b) mean en-
ergy of the ensemble as a function of the number of standing
wave pulses with negligible spontaneous emission. Strength of
the potential was ¢, = 7, and the data in each of the curves
were obtained with a different value of the pulse repetition
time 7.
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FIG. 5. The experimentally determined mean energy of the

ensemble after 30 pulses as a function of the amount of added
spontaneous emission. Strength of the potential was ¢, = w7,
and each of the curves shows data for different values of the
pulse repetition time 7.

until more than 0.2 added spontaneous emissions per kick
are present. This is consistent with the picture that at
61 ws the wave field is well localized and consequently
relative movements between the atoms and the grating have
less of an effect. Conversely, at the resonance the position
of the grating is absolutely critical if the rephasing neces-
sary to reduce the mean energy is to occur.

The basis of our experiment has been described else-
where [6], so here we give only a brief description. Cesium
atoms from a magneto-optic trap were cooled in optical
molasses and then released to fall under gravity. After a
few milliseconds, standing wave pulses from a Ti:sapphire
laser were applied to the cold atomic ensemble. The stand-
ing wave was orientated vertically, so that there was a net
gravitational acceleration between the atoms and the stand-
ing wave. This acceleration was removed by an electro-
optic phase shifter which was placed between the atomic
cloud and the retroreflection mirror used to form the stand-
ing wave. After each 7, = 0.5 ws pulse of the standing
light wave, the voltage on the phase shifter was adjusted in
order to compensate for the movement of the atoms caused
by gravity. The Ti:sapphire laser was tuned 30 GHz below
the D1 (6812, F = 4) — (6P1/2, F = 3) transition, with a
power in the standing wave of ~120 mW and a beam waist
of roughly 1 mm. This allowed us to produce standing
waves with ¢, = 7 having a residual spontaneous emis-
sion rate which was approximately 10~ per pulse. The
controlled addition of spontaneous emission was achieved
by switching on a fraction of the power in four of the mo-
lasses beams immediately following each standing wave
pulse.

The atomic momentum distribution was determined us-
ing a time-of-flight technique. As the atoms fell through
a resonant probe laser beam located 50 cm below the
trap, the amount of absorption in the beam was measured.
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Each shot was repeated 3 times so that the overall signal-
to-noise ratio for a given momentum distribution was ap-
proximately 500:1. This is an extremely important point
when considering experiments looking at the mean energy,
since noise at high atomic momentum has a disproportion-
ate effect. To ensure that we were not unduly affected by
noise in the wings of the momentum distribution it was
necessary to filter the time-of-flight measurements by us-
ing a Fourier technique.

Our results have shown that quantum resonances are
characterized by a local maximum in mean energy. For
certain initial momenta there is a critical phase relation-
ship between the momentum states populated by the delta
kicks. This leads to enhanced momentum diffusion. When
additional spontaneous emission is introduced the mean
energy at the resonances grows relative to that at neighbor-
ing pulse intervals. Since the introduction of noise makes
the system in some sense more classical, the pronounced
response to it at the resonances makes them ideal regions
for studying quantum-classical correspondence.

Adjacent to the maxima associated with the resonances
exist minima which correspond to the pulse interval for
which the wave field is periodically localized. In this re-
gion the strongly localized wave function sees very little
sinusoidal variation in the potential and can only diffuse to
a small extent. Even with moderately high levels of spon-
taneous emission the minima in mean energy adjacent to
the quantum resonances are largely unaffected. This lack
of sensitivity to processes which destroy coherence can be
interpreted as being due to the fact that the wave field has
a well-localized form which in some respects resembles a
classical particle.
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