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Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic
scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of
a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac
eigenstates.
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Pseudospin doublets were introduced more than
thirty years ago into nuclear physics to accommodate
an observed near degeneracy of certain normal-parity
shell-model orbitals with nonrelativistic quantum numbers
(nr , �, j � � 1 1�2) and (nr 2 1, � 1 2, j � � 1 3�2)
where nr , �, and j are the single-nucleon radial, or-
bital, and total angular momentum quantum numbers,
respectively [1,2]. The doublet structure, j � �̃ 6 s̃, is
expressed in terms of a “pseudo” orbital angular momen-
tum �̃ � � 1 1 coupled to a “pseudo” spin, s̃ � 1�2.
This pseudospin “symmetry” has been used to explain
features of deformed nuclei [3], including superdeforma-
tion [4] and identical bands [5,6]. Although the observed
reduction in pseudo spin-orbit splitting follows from
nuclear relativistic mean fields [7], only recently has
the pseudospin “symmetry” been shown to arise from a
relativistic symmetry of the Dirac Hamiltonian [8,9].

The Dirac Hamiltonian, H, with an external scalar, VS ,
and vector, VV , potentials is invariant under a SU(2) alge-
bra for VS � VV 1 const, leading to pseudospin symme-
try in nuclei [9]. The pseudospin generators, ˆ̃Sm, which

satisfy �H, ˆ̃Sm� � 0 in the symmetry limit, are given by

ˆ̃Sm �

√
ˆ̃sm 0
0 ŝm

!
�

√
UpŝmUp 0

0 ŝm

!
, (1)

where ŝm � sm�2 are the usual spin generators, sm

are the Pauli matrices, and Up �
s ? p

p is the momentum-
helicity unitary operator introduced in [7]. If, in addition,
the potentials are spherically symmetric, VS,V �r� �
VS,V �r�, the Dirac Hamiltonian has an additional in-
variant SU(2) algebra, �H , ˆ̃Lm� � 0, with the pseudo-

orbital angular momentum operators given by ˆ̃Lm �

�
ˆ̃�m

0
0

�̂m
�. Here ˆ̃�m � Up �̂mUp, �̂m � r 3 p, while

ĵm � ˆ̃�m 1 ˆ̃sm � Up��̂m 1 ŝm�Up � �̂m 1 ŝm. The
eigenfunctions of the Dirac Hamiltonian are also
eigenfunctions of the Casimir operator of this algebra,
ˆ̃L ? ˆ̃Ljñr , �̃, j, m� � �̃��̃ 1 1� jñr , �̃, j, m�, where we have
used a coupled basis, j � �̃ 1 s̃, and set h̄ � c � 1.
Here j is the eigenvalue of the total angular mo-
mentum operator Ĵm � ˆ̃Lm 1 ˆ̃Sm, Ĵ ? Ĵj ˆ̃nr , �̃, j, m� �
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j� j 1 1� j ˆ̃nr , �̃, j, m�, m is the eigenvalue of Ĵz , and ñr is
the pseudoradial quantum number which we define below.

In the pseudospin symmetry limit, the eigenstates of the
Dirac Hamiltonian in the doublet j � �̃ 6 1�2 are degen-
erate, and are connected by the pseudospin generator ˆ̃Sm:

ˆ̃Smj ˆ̃nr , �̃, ji , mi� �
X

jf ,mf

Ajf ,mf ,ji ,mi
jñr , �̃, jf , mf � . (2)

Here Ajf ,mf ,ji ,mi
� �21�1�2 2 mf 1 �̃

q
3�2ji 1 1� �2jf 1 1�

2 3

� jf
2mf

1
m

ji
mi

� �
1

2
jf

�̃
1

ji
1

2

�, where the symbols are Wigner 3-j

and 6-j symbols, respectively. However, in the exact
pseudospin limit, VS � 2VV , there are no bound Dirac
valence states. For nuclei to exist the pseudospin sym-
metry must therefore be broken. Nevertheless, realistic
mean fields involve an attractive scalar potential and a
repulsive vector potential of nearly equal magnitudes,
VS 	 2VV , and calculations in a variety of nuclei confirm
the existence of an approximate pseudospin symmetry in
the energy spectra [10–12]. Since pseudospin symmetry
is broken, the pseudospin partner produced by the raising
and lowering operators acting on an eigenstate will not
necessarily be an eigenstate. The question is how different
is the pseudospin partner from the eigenstate with the same
quantum numbers? As noted, energy splittings suggest
that the breaking of pseudospin symmetry is small, but is
the breaking in the eigenfunctions small as well? While
previous studies have compared the lower components of
the Dirac wave functions of the two states in the doublet
[10–12], it is the behavior of the upper components
which is of most interest since they dominate the Dirac
eigenstates. The relativistic pseudospin symmetry has
unique and interesting features in the following sense.
First, the pseudospin generators of Eq. (1) intertwine
space and spin, and thus lead to an uncommon symmetry
structure of doublets with different radial wave functions.
Second, since bound Dirac valence states do not exist in
the symmetry limit, the pseudospin properties of realistic
wave functions can not be determined by perturbation
theory. These aspects motivate this paper.

To determine the pseudospin partners we need to expand
the Dirac eigenfunction into a spherical basis,
© 2001 The American Physical Society 072502-1
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rjñr , �̃, j � �̃ 1
1
2 , m� � � gñr21,�̃,j�r� �Y ��̃11��r̂�x�� j�

m ,

ifñr ,�̃,j�r� �Y ��̃��r̂�x�� j�
m � (3a)


rjñr , �̃, j � �̃ 2
1
2 , m� � � gñr ,�̃,j�r� �Y ��̃21��r̂�x�� j�

m ,

ifñr ,�̃,j�r� �Y ��̃��r̂�x�� j�
m � ,

(3b)

where Y
��̃�
m�̃ �r̂� is the spherical harmonic and x is the spin

function. From this expansion we see that the pseudoradial
quantum number, ñr , is the radial quantum number of the
lower component of the Dirac eigenfunction [13] as well
as the radial quantum number of the upper component of
the eigenstate with j � �̃ 2 1�2. Because the pseudospin
generators ˆ̃Sm depend on the unit momentum vector p̂, we
transform the eigenfunctions to momentum space in order
to calculate the effect of the pseudospin generators on the
eigenfunctions:


 pjñr , �̃, j � �̃ 1
1
2 , m� � � g̃ñr 21,�̃,j� p� �Y ��̃11�� p̂�x�� j�

m ,

if̃ñr ,�̃,j� p� �Y ��̃�� p̂�x�� j�
m � ,

(4a)


 pjñr , �̃, j � �̃ 2
1
2 , m� � � g̃ñr ,�̃,j� p� �Y ��̃21�� p̂�x�� j�

m ,

if̃ñr ,�̃,j� p� �Y ��̃�� p̂�x�� j�
m � .

(4b)

The corresponding spherical Bessel transforms of the ra-
dial wave functions are given by

g̃ñr 21,�̃,j� p� � �2i��̃11

s
2
p

Z `

0
j�̃11� pr�gñr21,�̃,j�r�r2 dr,

j � �̃ 1
1
2

, (5a)

g̃ñr ,�̃,j� p� � �2i��̃21

s
2
p

Z `

0
j�̃21� pr�gñr ,�̃,j�r�r2 dr,

j � �̃ 2
1
2

, (5b)

f̃ñr ,�̃,j� p� � �2i��̃

s
2
p

Z `

0
j�̃� pr�fñr ,�̃,j�r�r2 dr,

j � �̃ 6
1
2

. (5c)

We then are able to derive
ˆ̃Smjñr , �̃, ji , mi� � Aji ,mi ,ji ,mi jñr , �̃, ji, mi�

1 Ajf ,mf ,ji ,mi jñr , �̃, jf , mf �psp. (6)

Here the superscript psp on the second term denotes the
pseudospin partner with jf fi ji . Even with pseudospin
breaking, the pseudospin generators do not change �̃. In
addition, from Eq. (6) we see that the first term with
jf � ji is exactly equal to the original eigenstate, indepen-
dent of the amount of pseudospin breaking. This follows
from the orthogonality of the spherical Bessel functions,

2
p

R`

0 p2 dp j�̃� pr�j�̃� px� �
d�r2x�

r2 . For the partner with
jf fi ji , the wave function in coordinate space reads
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rjñr , �̃, j � �̃ 1
1
2 , m�psp � � g

psp

ñ0
r21,�̃,j�r� �Y ��̃11��r̂�x�� j�

m ,

if
psp
ñr ,�̃,j�r� �Y ��̃��r̂�x�� j�

m � ,
(7a)


rjñr , �̃, j � �̃ 2
1
2 , m�psp � � g

psp
ñ0

r ,�̃,j�r� �Y ��̃21��r̂�x�� j�
m ,

if
psp
ñr,�̃,j�r� �Y ��̃��r̂�x�� j�

m � ,
(7b)

where, in general, ñ0
r can differ from ñr since the

states with jf fi ji in Eq. (6) are not Dirac eigenstates.
The expressions for g

psp
ñ0

r ,�̃,j21�r� with j � �̃ 1
1
2 and

g
psp
ñ0

r21,�̃,j11�r� with j � �̃ 2
1
2 involve a double inte-

gral 2
2
p

R`
0 p2 dp

R`
0 x2 dx over j�̃21� pr�j�̃11� px� 3

gñr21,�̃,j�x� and j�̃11� pr�j�̃21� px�gñr ,�̃,j�x�, respectively.
The p integration can be carried out, and altogether we
find [14]

g
psp
ñ0

r ,�̃,j21�r� � gñr 21,�̃,j�r� 2 �2� 1 1�r �̃21

3
Z `

r

dx

x�̃
gñr21,�̃,j�x� j � �̃ 1

1
2

,

(8a)

g
psp
ñ0

r 21,�̃,j11�r� � gñr ,�̃,j�r� 2
�2�̃ 1 1�

r �̃12

3
Z r

0
dx x�̃11 gñr ,�̃,j�x�

j � �̃ 2
1
2

, (8b)

f
psp
ñr ,�̃,j71�r� � fñr ,�̃,j�r�, j � �̃ 6

1
2

. (8c)

In the pseudospin limit (VS 1 VV � const),

jñr , �̃, j, m�psp � jñr , �̃, j, m� . (9)

Since pseudospin symmetry is slightly broken in nu-
clei, the pseudospin partner can differ from the Dirac
eigenstate and it is of interest to examine the deviations
from the condition of Eq. (9). Dirac bound states satisfy
gñr ,�̃,j��̃61�2 	 r �̃61 for small r, and fall off exponen-
tially, 	 exp�2

p
M2 2 E2 r�, for large r [13], where

M is the nucleon mass and E is the Dirac eigenenergy.
Consequently, as seen from Eq. (8a), for the Dirac eigen-
state with j � �̃ 1 1�2, its pseudospin partner g

psp
ñ0

r ,�̃,j21
has the expected behavior for small and large r. On
the other hand, as seen from Eq. (8b), for the Dirac
eigenstate with j � �̃ 2 1�2, its pseudospin partner
g

psp
ñ0

r21,�̃,j11 	 r �̃21 for small r, and falls off as a power

law r2��̃12� for large r. As such it has a behavior which
is very different from that of a Dirac bound state with
j � �̃ 1 1�2. This asymmetry in the behavior of the
pseudospin partners of j � �̃ 1 1�2 or j � �̃ 2 1�2
Dirac eigenstates is evident in the analysis of nuclear
wave functions presented below. These realistic wave
functions were obtained in a relativistic point coupling
072502-2
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model, and we refer the reader to [10] for details on the
parametrization of the potentials, and the data used to
fix it.

We first examine Dirac eigenstates with j � �̃ 1 1�2
and wave functions as in Eq. (3a). Their partners with
j0 � j 2 1 are obtained from Eqs. (8a) and (8c). As
an example, we consider the realistic relativistic mean
field Dirac eigenstates 0d3�2 and 1d3�2 (�̃ � 1, j � 3�2)
for 208Pb [10]. In Fig. 1 we compare the spatial wave
functions of these pseudospin partners, �P�0d3�2��s1�2
and �P�1d3�2��s1�2, with the eigenstates, 1s1�2 and 2s1�2.
(The symbol P means the s1�2 partner of the 0d3�2 or
1d3�2 eigenstates.) The lower components agree very well,
which was noted previously [10–12], except for some dis-
agreement on the surface. For the upper components the
agreement is not as good in the magnitude but the shapes
agree well, with the number of radial nodes being the same
[ñ0

r � ñr in Eq. (7a)]. The agreement improves as the
radial quantum number increases, which is consistent with
the observed decrease in the energy splitting between the
doublets [8,10]. As another example in the same category
( j � �̃ 1 1�2), we compare in Fig. 2 the �P�0h9�2�� f7�2

partner of the 0h9�2 eigenstate (�̃ � 4, j � 9�2) with the
1f7�2 eigenstate. The radial wave functions have the same
number of radial quantum numbers and, again, for the
lower components the agreement is better.

Next we examine the other category of Dirac eigenstates
with j � �̃ 2 1�2 and wave functions as in Eq. (3b).
Their partners with j0 � j 1 1 are obtained from
Eqs. (8b) and (8c). As an example, we consider the realis-
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FIG. 1. (a) The upper component [ g�r�] and (b) the lower
component [ f�r�] in �Fermi�23�2 of the �P�0d3�2��s1�2 part-
ner of the 0d3�2 eigenstate compared to the 1s1�2 eigenstate.
(c) The upper component and (d) the lower component of the
�P�1d3�2��s1�2 partner of the 1d3�2 eigenstate compared to the
2s1�2 eigenstate for 208Pb [10].
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tic relativistic mean field eigenstates 0s1�2, 1s1�2, and 2s1�2

(�̃ � 1, j � 1�2) for 208Pb [10]. The 0s1�2 eigenstate
will have a partner which we denote by �P�0s1�2��d3�2,
but there is no d3�2 eigenstate at approximately the same
energy as the 0s1�2 eigenstate, so there is no eigenfunction
with which to compare. On the other hand, the 1s1�2 and
2s1�2 eigenstates are almost degenerate with the 0d3�2
and 1d3�2 eigenstates, respectively. In Fig. 3 we compare
the spatial wave functions of the pseudospin partners
�P�1s1�2��d3�2 and �P�2s1�2��d3�2 with the respective
0d3�2 and 1d3�2 eigenstates. These partners agree well
with the eigenfunctions in the interior but not on the
nuclear surface. In fact, the partners do not have the same
number of nodes and do not fall off exponentially but
inversely as the cubic power, r23, in agreement with the
r2��̃12� behavior reported in Eq. (8b).

The Dirac eigenstates with ñr � 0 and j � �̃ 2 1�2
are special, because no eigenstates exist with the quan-
tum numbers of their partners, ñr � 0 and j � �̃ 1 1�2.
An example is given in Figs. 3a and 3b for �̃ � 1 and
j � 1�2. For heavy nuclei these states with large j are the
“intruder” states. Before the SU(2) algebra of pseudospin
was discovered, these states were discarded from the pseu-
dospin scheme. However, that is clearly not a valid proce-
dure if pseudospin symmetry is a symmetry of the Dirac
Hamiltonian. As another example, we show in Figs. 4a
and 4b the radial wave function of the �P�0f7�2��h9�2 part-
ner of the 0f7�2 intruder state (�̃ � 4, j � 7�2� . There
is no quasidegenerate h9�2 eigenstate with which to com-
pare. The upper component has the r26 falloff alluded to
above. Although both components have zero radial quan-
tum number, they do not compare well with the 0h9�2
eigenstate shown in Figs. 4c and 4d. In Figs. 4c and 4d we
also show the radial wave function of the �P�1f7�2��h9�2

partner of the 1f7�2 state (�̃ � 4, j � 7�2) and compare
it to the 0h9�2 eigenstate. The upper component again has
the r26 falloff and therefore does not compare well on the
surface. Also the number of radial quantum numbers dif-
fer. The lower components agree better.

In summary, we have shown that the radial wave
functions of the upper components of the j � �̃ 2 1�2
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FIG. 2. (a) The upper component [g�r�] and (b) the lower
component [ f�r�] in �Fermi�23�2 of the �P�0h9�2�� f7�2 part-
ner of the 0h9�2 eigenstate compared to the 1f7�2 eigenstate
for 208Pb [10].
072502-3



VOLUME 87, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 13 AUGUST 2001
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15

g(r)

r (Fermi)

-0.01

0

0.01

0.02

0.03

0 5 10 15
r (Fermi)

0d 3/ 2
___

0

0.002

0.004

0.006

0.008

0.01

0 5 10 15

f(r)

r (Fermi)

-0.05

0

0.05

0.1

0.15

0 5 10 15

g(r)

r (Fermi)

0d3/ 2
___

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15

g(r)

r (Fermi)

_1d3/2 -0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15

f(r)

r (Fermi)

_1d3/2

f(r)

a) b)

c) d)

e) f)

--- [P(1s     )]d1/2 3/2

--- [P(1s     )]d1/2 3/2

--- [P(2s     )]d1/2 3/2
--- [P(2s     )]d1/2 3/2

--- [P(0s     )]d1/2 3/2

--- [P[(0s     )]d1/2 3/2

FIG. 3. (a) The upper component [ g�r�] and (b) the lower
component [f�r�] in �Fermi�23�2 of the �P�0s1�2��d3�2 partner of
the 0s1�2 eigenstate. (c) The upper component and (d) the lower
component of the �P�1s1�2��d3�2 partner of the 1s1�2 eigenstate
compared to the 0d3�2 eigenstate. (e) The upper component and
(f) the lower component of the �P�2s1�2��d3�2 partner of the
2s1�2 eigenstate compared to the 1d3�2 eigenstate for 208Pb [10].

pseudospin partner of the eigenstate with j � �̃ 1 1�2
is similar in shape to the j � �̃ 2 1�2 eigenstate but
there is a difference in magnitude. However, the ñr fi 0
radial wave functions of the upper components of the
j � �̃ 1 1�2 pseudospin partner of the eigenstate with
j � �̃ 2 1�2 is not similar in shape to the j � �̃ 1 1�2
eigenstate. In fact these wave functions approach r �̃21

rather than r �̃11 for r small, do not have the same number
of radial nodes as the eigenstates, and do not fall off
exponentially as do the eigenstates, but rather fall off
as r2��̃12�. Furthermore, the pseudospin partners of the
“intruder” eigenstates, ñr � 0, also fall off as r2��̃12�.
We have confirmed that the radial wave functions of
the lower components of the pseudospin partners of
eigenstates of the Dirac Hamiltonian for j � �̃ 6 1�2
are very similar to the eigenstates with the same quantum
numbers, except for some differences on the surface.
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the 0f7�2 eigenstate. (c) The upper component and (d) the lower
component of the �P�1f7�2��h9�2 partner of the 1f7�2 eigenstate
compared to the 0h9�2 eigenstate for 208Pb [10].
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