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The dominant theoretical uncertainties in both the anomalous magnetic moment of the muon and the
value of the electromagnetic coupling at the Z scale, MZ , arise from their hadronic contributions. Since
these will ultimately dominate the experimental errors, we study the correlation between them, as well as
with other fundamental parameters. To this end we present analytical formulas for the QCD contribution
from higher energies and from heavy quarks. Including these correlations affects the Higgs boson mass
extracted from precision data.
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The magnetic moment of the electron, ge, provides the
best determination of the fine structure constant, but is
currently not measured precise enough to give a sensi-
tive probe of electroweak physics. On the other hand,
electroweak contributions to the anomalous magnetic mo-
ment of the muon [1], am � �gm 2 2��2, are enhanced by
a factor m2

m�m2
e � 4 3 104, which renders them sizable

enough to be detectable at the ongoing E821 experiment
at the AGS at BNL (at has not yet been observed experi-
mentally). E821 already reduced the experimental error
to 61.6 3 1029 [2]. The anticipated final error of about
60.4 3 1029 will mean a factor of 20 improvement rela-
tive to previous results [3]. am therefore provides a good
laboratory to test the standard model (SM) and probe the-
ories beyond it [4]. For example, scenarios of low-energy
supersymmetry with large tanb and moderately light su-
perparticle masses can give large contributions to am [5].

Unfortunately, the interpretation of am is compromised
by a large theoretical uncertainty introduced by hadronic
effects. The 2- and 3-loop vacuum diagrams containing
light quark loops cannot be calculated reliably in pertur-
bative QCD (PQCD). Instead they are obtained by com-
puting dispersion integrals over measured (at low energies)
and theoretical (at higher energies) hadronic cross sections.
At two loop [6],

am�had; 2-loop� �

µ
amm

3p

∂2 Z `

4m2
p

ds

s2 K̂�s�R�s� , (1)

where R�s� is the cross section of e1e2 ! hadrons, nor-
malized to the tree level cross section of e1e2 ! m1m2,

K̂�s� �
Z 1

0
dx

3x2�1 2 x�
1 2 x 1 x2m2

m�s
. (2)

The uncertainty introduced by this procedure is signifi-
cantly larger than the anticipated experimental uncertainty.
For example, Ref. [7] quotes an error of 60.67 3 1029,
while other evaluations [8–10] give larger uncertainties.
An analogous uncertainty occurs in the QED coupling con-
stant, â�m�, [modified minimal subtraction scheme �MS�
quantities will be marked by a caret], preventing its precise
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theoretical computation from the fine structure constant,
a, for m * 2mp0 . Knowledge of â�MZ� is indispensable
for the extraction of the Higgs boson mass, MH , from the
mass of the W boson, MW , and the weak mixing angle,
ŝ2

W . Again one must rely on a dispersion integral to be
taken over R�s�, but using a different kernel function. As
a result, these hadronic uncertainties are strongly corre-
lated with each other, and also with other fundamental SM
parameters, such as the strong coupling constant and the
heavy quark masses.

To address these correlations we obtain compact analyti-
cal expressions for am�had� wherever possible, i.e., for
the charm and bottom quarks, as well as for the high-
energy integration region (above 1.8 GeV) for light quarks
where PQCD appears to be applicable. A similar idea was
pursued in Ref. [11], for the calculation of â�MZ �.

To lowest order in QED, the anomalous magnetic mo-
ments are lepton universal and mass independent [12],
a

1-loop
� � a�2p. To 2-loop order, one has

a2-loop
m � am

m 1 ae
m 1 at

m 1 ab
m 1 ac

m 1 auds
m 1 ahad

m ,
(3)

where the lepton contributions [13] amount to am
m

1 ae
m 1

at
m � 4132.18 3 1029. ab

m and ac
m are heavy quark con-

tributions. To proceed, we used the expansion

K̂�s� � 1 1 k1�
p

s �
m2

m

s
1 k2�

p
s �

m4
m

s2 1 O

µ
m6

m

s3

∂
,

where

k1�x� �
25
4

1 3 ln
m2

m

x2 , k2�x� �
291
10

1 18 ln
m2

m

x2 .

In Eq. (1) the integration is over the imaginary part of
the photon polarization function which is related to R by
R�s� � 12p ImP�q2 1 ie� and is taken along the real
axis from the quarkonium threshold to infinity. Analytic
continuation allows us to integrate instead over the full
function, P�s�, along a circle of radius s � m̂2

q�m̂2
q� coun-

terclockwise around the origin. This avoids a complicated
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integration over resonances, i.e., a region where perturbative QCD is not applicable, at the expense of introducing a new
uncertainty from the imperfect knowledge of the �MS� quark mass (see the discussion in the next paragraph). With P�s�
known up to O �a2

s � [14], we find, for a quark of charge Qq,

aq
m �

Q2
q

4
a2

p2

Ω
m2

m

4m̂2
q

∑
16
15

1
3104
1215

as 1 a2
s

µ
0.5099 1

2414
3645

nl

∂∏

1
m4

m

16m̂4
q

∑
108
1225

2 0.1943as 1 3 ln
m2

m

m̂2
q

µ
16
35

1
15728
14175

as 1 1.4123a2
s 1

290179
637875

nla
2
s

∂∏æ
, (4)
where as � as�m̂q��p, nl � 3 for charm, and nl � 4
for bottom. Higher orders in m2

m�m̂2
q can safely be ne-

glected. Terms of O �a2
s m4

m� can also be dropped unless
they are logarithmically enhanced. Nonperturbative effects
in the operator product expansion were also computed and
found to be negligible. Using (here and in the following)
as�MZ� � 0.120, m̂c � 1.31 GeV, and m̂b � 4.24 GeV,
we find ac

m � 1.39 3 1029 and ab
m � 0.03 3 1029.

In contrast to the numerical integration over resonances,
Eq. (4) is a simple and transparent representation of the
heavy quark contribution. More importantly, the uncer-
tainty implied by Eq. (4) is smaller. To see this, notice first
the excellent behavior of its as expansion, implying a small
truncation error which we evaluated to be 60.05 3 1029.
The dominant uncertainty is induced via the MS charm
mass, but it is necessarily smaller than in the conventional
approach regardless of the available data in the resonance
region: if one compares the two treatments— integration
over the real axis heavily relying on experimental results
and integration over the circle contour relying only on
PQCD —one can determine the heavy quark masses by
demanding consistency. This effectively amounts to deriv-
ing a specific QCD sum rule. The point we are making
here is that this is only one of a large number of pos-
sible sum rules, but not the one which uses the available
information most efficiently. The charm mass extracted
from the most efficient sum rule [15] (and other precise
quark mass determinations) can then be used for Eq. (4).
An unweighted average of various determinations yields
[11] Dm̂c � 60.07 GeV and Dac

m � 60.16 3 1029. In
the near future these uncertainties are likely to reduce to
about 60.04 GeV and 60.09 3 1029, respectively. Simi-
071804-2
larly, Dm̂b � 60.11 GeV, but the induced error in am is
negligible.

The remaining terms in Eq. (3) are due to u, d, and s
quark effects, which we separated into the contributions
from

p
s $ m0 � 1.8 GeV �auds

m � and
p

s # m0 �ahad
m �.

auds
m can be written as an expansion in m2

m�m
2
0. For the

leading contribution, we find

auds;LO
m �

2
9

a2

p2

m2
m

m
2
0

µ
1 1 B1 1

X̀
n�2

dnBn

∂
, (5)

where d2 � 299�24 2 9z �3� and d3 � 58057�288 2

779z�3��4 1 75z �5��2 are coefficients of the Adler
D-function, and

Bn �
1

2pi

I
jsj�m2

0

ds

s

µ
1 2

m
2
0

s

∂ ∑
as�2s�

p

∏n

, (6)

which we compute with a 4-loop renormalization group
improvement. For a representative value as�m0��p � 0.1,

B1 � 7.069 3 1022, B2 � 4.514 3 1023,

B3 � 2.562 3 1024, B4 � 1.243 3 1025.
(7)

Notice that B4 is small enough that even with the fourth
order coefficient, d4, unknown this treatment keeps the
truncation error at a negligible level. (For an estimate
of the uncertainty of d4, see Ref. [16].) Denoting k0

1 �
k1�m0� 2

3
2 and k0

2 � k2�m0� 2 6, we find for the sub-
leading contributions,
p2

a2 auds;rem
m �

2
9

as

m2
mm̂2

s �m2
0�

m
4
0

1 a2
s

m2
m

m
2
0

G

µ
m

2
0

m̂2
c�m̂2

c�

∂
1

Ω
�1 1 as�

k0
1

9
1 a2

s

∑µ
34
27

2 z �3�
∂
k0

1 1
3
16

∏æ
m4

m

m
4
0

1
2
3

Ω
�1 1 as�

k0
2

9
1 a2

s

∑µ
281
216

2 z �3�
∂
k0

2 1
1
2

∏æ
m6

m

m
6
0

, (8)

where in O �âs� we kept the small s quark mass effect ��3 3 10212�. G�x� arises from virtual charm quark effects
inside a light quark loop (double bubble diagram). Even below threshold it can be well approximated as an expansion in
x despite the fact that m̂2

c , m
2
0,

G�x� �
x

1215

∑
3503
75

2
2p2

3
2

88
5

lnx 1 2 ln2x

∏
1

x2

11340

∑
1723
420

2 lnx

∏
. (9)

G�x� also applies to b quarks, but this contribution can be safely neglected. We find auds
m � 4.38 3 1029 and the leading

order resummation in Eq. (5) renders the truncation error negligible.
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Leading order nonperturbative contributions due to
gluon and light quark condensates are suppressed by two
powers of as and they change am by less than 10212,
an effect completely negligible. Effects from up- and
down-quark condensates are suppressed by a further
factor of m2

p�m2
K , and quartic mass terms are tiny as well.

Uncertainties from nonperturbative effects not accounted
for by the operator product expansion, which are due to
the transition from the data region to PQCD at m0, were
estimated in Ref. [7] which quotes 60.024 3 1029.

We take the low-energy contribution from Ref. [7],

ahad
m � �63.43 6 0.60� 3 1029, (10)

which includes a QCD sum rule improvement, PQCD
down to a relatively low m0 � 1.8 GeV, as well as addi-
tional information from t decays. The quoted error is not
uncontroversial [4,10] and needs to be confirmed. Note,
however, that inclusion of the t-decay data decreases the
difference between the SM prediction and the current ex-
perimental result [2]. Our reason for using Ref. [7] is that
it quantifies the correlation (69%) with the corresponding
result on Dahad � �56.53 6 0.83� 3 1024. We also ac-
count for the almost perfect anticorrelation with higher
order hadronic uncertainties, as will be discussed below.
The total 2-loop quark contribution is ab

m 1 ac
m 1 auds

m 1

ahad
m � 69.23 3 1029.
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This completes the discussion of the terms appearing
in Eq. (3). The leading contribution at O �a3� is from
the light-by-light diagram containing an electron loop
[17]. The contribution due to ae;lbl

m � 20.9479a3�p3 �
262.54 3 1029 is almost 4 times larger than the entire
hadronic contribution at O �a2�. The correspond-
ing contribution involving a muon loop is am;lbl

m
�

0.3710a3�p3 � 4.65 3 1029, and the t contributes [17],
at;lbl

m � 0.03 3 1029. An evaluation of the hadronic
light-by-light contribution yields [18]

ahad;lbl
m � �20.792 6 0.154� 3 1029, (11)

which is consistent with the finding in Ref. [19]. Notice
that hadrons and leptons contribute with opposite signs.
Since these results are based on model calculations, an
independent confirmation would be desirable.

The purely leptonic 3-loop vacuum polarization con-
tribution is again dominated by electron loops and given
by a

�;vpol
m � 2.7294a3�p3 � 34.21 3 1029. On the

other hand, the contribution from two hadronic loops is
suppressed by a factor m4

m�16m4
p6 and therefore small

a
had;vpol
m � �0.027 6 0.001� 3 1029 [9]. Similar to

our strategy at two loops, we separated the mixed
leptonic-hadronic contribution into heavy quarks, light
quarks �

p
s $ m0�, and light hadrons �

p
s # m0�. The t-

hadronic contribution is of the order of 10212 and negli-
gible. As for the other leptons, we use the kernel functions
from Ref. [20] and obtain, for charm and bottom quarks,
a�2q;vpol
m �

a3

p3
Q2

q

m2
m

4m̂2
q

∑µ
8
5

1
1552
405

as

∂ µ
110
27

2
p2

3
1

23
36

ln
m2

m

m̂2
q

1
1
9

ln
m2

m

m2
e

∂
2

1771
675

∏
, (12)

which amounts to 20.05 3 1029 and 20.002 3 1029, respectively. For the light quarks, we obtain,

a�2uds;vpol
m �

a3

p3

1 1 as

9

∑
m2

m

m
2
0

µ
371
9

2 4p2 1
23
3

ln
m2

m

m
2
0

1
4
3

ln
m2

m

m2
e

∂

1
m4

m

m
4
0

µ
20359
576

2
103
24

p2 1
509
72

ln
m2

m

m
2
0

1
19
6

ln
m2

m

m2
e

2
5
24

ln2
m2

m

m
2
0

2 2 ln
m2

m

m
2
0

ln
m2

m

m2
e

∂∏

� 20.15 3 1029. (13)
We found the vacuum polarization contribution aris-
ing from an electron in one loop and light hadrons in
the other one, a

e2had;vpol
m � 0.97 3 1029, by construct-

ing a simplified function R�s� which reproduces the results
in Ref. [7]. a

e2had;vpol
m is almost completely �.99.9%�

correlated with ahad
m in Eq. (10). On the other hand,

a
m2had;vpol
m � 21.80 3 1029 is very strongly ��297%�

anticorrelated with ahad
m . The small uncorrelated error con-

tributions are clearly negligible, and the correlated ones
can be added (subtracted) linearly, slightly reducing the
error in Eq. (10) to 60.59 3 1029. By including the un-
certainty from the light-by-light contribution in Eq. (11),
we obtain 60.61 3 1029 as the total hadronic error, ex-
cluding parametric uncertainties.
Taking the other theoretical uncertainties mentioned ear-
lier to be 100% correlated with the corresponding uncer-
tainties in Dahad (which is a fit parameter), we obtain a
residual correlation of 55% or 60.34 3 1029 (the uncor-
related error is 60.51 3 1029).

The 4-loop contribution [21], a4-loop
m

� 126.04a4�p4 �
3.67 3 1029, and the 5-loop estimate [22], a5-loop

m
�

930a5�p5 � 0.06 3 1029, are also included.
The 1-loop electroweak corrections due to W and Z

boson loops are given by [23]

aEW;1-loop
m �

GFm2
m

24
p

2 p2
�5 1 �1 2 4s2

W�2� . (14)
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The 2-loop corrections to Eq. (14) are significant due to
large logarithmic contributions [24–26],

aGFm2
m

24
p

2 p3

∑
41 2

124
3

s2
W �1 2 2s2

W �
∏

ln
M2

Z

m2
m

. (15)

The fermionic 2-loop result, including some additional
logarithms and subleading contributions, was obtained in
Ref. [25] for small and large values of MH . We constructed
an interpolation formula for other values of MH which
reads, in units of a�mm�GFm2

m��3
p

2 p3�,
13 1 6 lnx

9
�1 2 v� 1 x

∑
3 1

p2

3
1 �lnx 1 1�2

∏
v ,

(16)

where x � m̂2
t �M2

H and v � e23.31849x. Equation (16) re-
produces the exact result [25] for MH � m̂t . The bosonic
2-loop corrections were obtained only for large values of
MH and as an expansion in s2

W [26]. We take the lead-
ing nonlogarithmic contribution in the MH ! ` limit (a22
in Ref. [26]) as the uncertainty induced by subleading
bosonic 2-loop effects. The leading logarithms to 3-loop
order have also been computed [27] and included in our
analysis. We obtain aEW

m � �1.52 6 0.03� 3 1029.
Summation of the various contributions gives �gm 2

2 2 a�p��2 � 4506.28 3 1029. Including our evalu-
ation of am into a global analysis of electroweak data
yields,

1
2

µ
gm 2 2 2

a

p

∂
� �4506.35 6 0.37 6 0.51� 3 1029,

(17)

where the first error includes Dahad and all other paramet-
ric uncertainties, such as the 60.028 error in as�m0� ob-
tained from current global fits. The extracted Higgs mass
from this fit is MH � 88149

233 GeV. The current experimen-
tal world average, �4510.55 6 1.51� 3 1029 [which dif-
fers by 2.6s from Eq. (17)], needs to be included into the
analysis as well. This is achieved by combining the experi-
mental error with the second error in Eq. (17) in quadra-
ture (for a total of 1.59 3 1029). The global fit then yields
4506.52 6 0.36 (parametric) with a pull of 2.5. The cru-
cial observation here is that now MH � 83147

231 GeV, i.e.,
both the central value and the uncertainty of MH decrease.
The increase in the precision in MH gained by properly
correlating it to Dahad (and assuming the SM) is almost
identical to that provided by the MW measurement at the
Tevatron run I.

To summarize, we carefully examined the error correla-
tions between am and other quantities entering electroweak
tests, especially Da�MZ�, as, and the quark masses. We
derived new analytical results for the hadronic contribu-
tions and showed that the proper treatment discussed in
this article has a significant effect on the extraction of MH ,
which could (depending on future experimental findings)
become even more dramatic.
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