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Comment on “Quantum Games and
Quantum Strategies”

In a recent Letter, Eisert et al. [1] introduce an elegant
scheme for quantizing classical games, and proceed to per-
form an extensive analysis of its application to the famous
two-player game, Prisoner’s Dilemma. In the traditional
form of this game, rational analysis leads the players to
“defect” against one another in a mutually destructive fash-
ion [2]. A central result of the Letter of Eisert et al. is the
observation that “by allowing quantum strategies the play-
ers escape the dilemma”— a new equilibrium replaces the
mutual defection. Here we argue that Eisert et al. achieve
this result only by applying an artificial constraint on the
set of strategies available to the players: they are permitted
a certain strategy, ŝz , and yet they are forbidden the logi-
cal counterstrategy, ŝx . We explicitly show that, when the
players are permitted free choice of any unitary strategy,
the behavior of the game is indeed wholly different.

The players of the quantum game are allowed a set
of “strategies” S that correspond to “some subset of the
group of unitary 2 3 2 matrices.” The only fundamen-
tal restriction on the choice of S is that it should include
the identity, Î, and the Pauli matrix, ŝy , which corre-
spond to “cooperate” and “defect” in the traditional game.
Eisert et al. specify their choice of S in the following
sentence: “it proves to be sufficient to restrict the strate-
gic space to the two-parameter set of unitary 2 3 2 ma-
trices, �Û�u, f� � cos�u�2� exp�ifŝz� 1 i sin�u�2�ŝy�,
with 0 # u # p and 0 # f # p�2.” There appear to be
two possible meanings of the word “sufficient”: (a) using
S is sufficient to discover properties of the general quantum
game, or (b) using S is sufficient to create some feature not
seen classically.

While Eisert et al. appear to have intended meaning
(b), their original paper did not make this clear; all the
readers to whom we have spoken have instead understood
meaning (a), which, as we will show, is incorrect. Further-
more, given that (b) was the intended meaning, one would
expect some discussion of the choice of S—otherwise one
cannot judge the significance of the result. To us it seems
unlikely that restricting the players to this set can reflect
any reasonable physical constraint (limited experimental
resources, say), because the set is not closed under compo-
sition. The (forbidden) ideal counterstrategy to ŝy is ŝx ,
which is equal to two consecutive allowed manipulations:
Û�0, p�2�Û�p, 0�. The authors’ choice of S therefore
appears difficult to justify in its own right —rather it
must be seen as a construct designed to demonstrate that
new features can occur for some choice of S. But the
existence of such features is not surprising—in fact, it
can be established very easily by using the trivial discrete
set S � �Î , ŝy , ŝz�. We note that ŝy is the ideal coun-
terstrategy if one’s opponent plays Î, and similarly ŝz

is the ideal counter to ŝy. However, the ideal counter to
ŝz , namely ŝx , is forbidden. Thus, as one might expect,
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the players gravitate toward using ŝz, and the game has
a Nash equilibrium in which both players do so. It is
also unsurprising that when we remove the unnatural
restriction and offer the full discrete set �Î, ŝx, ŝy, ŝz�
that the game changes completely —we find that every
strategy has a perfect counterstrategy (Î counters ŝx);
thus there is no equilibrium. The strategy set employed
by Eisert et al. is simply the continuous analog of our
restricted discrete set, and, as we show below, the ex-
actly analogous effect occurs when we lift their restriction.

We will write the operations applied by the players in the
form X̂ ≠ Ŷ , where X̂ is applied to the qubit controlled by
A and Ŷ to that controlled by B. Suppose that player A
applies X̂ to her qubit, prepared as the first in the entan-
gled state ĴjCC�, where Ĵ � exp�ipD̂ ≠ D̂�4� and D̂ �
iŝy is the defect matrix of [1]. The most general X̂ [
SU�2� is of the form X̂ � �xij�, where x11 � x�

22, x12 �
2x�

21, and detX̂ � 1. Therefore, A produces the state
�X̂ ≠ Î�ĴjCC� � �Î ≠ Ŷ �JjCC� for Ŷ � � yij� [ SU�2�,
where y11 � x11 and y12 � ix12. In other words, any uni-
tary transformation which A applies locally to her qubit is
actually equivalent to a unitary transformation applied lo-
cally by B. Consequently, if B were to choose D̂Ŷy, we
would have a final state Ĵy�X̂ ≠ D̂Ŷy�ĴjCC� � Ĵy�Î ≠

D̂ŶyŶ �ĴjCC� � jCD�, the optimal outcome for B. Thus,
for any given strategy of A, there is an ideal counterstrategy
for B, and vice versa. Not only does the pair of strategies
found by Eisert et al. fail to form a Nash equilibrium in
the space of unitary strategies; in this space there are no
Nash equilibria.

Equilibria are seen if we go beyond the unitary space,
e.g., to the space of all physically possible moves. Eisert
et al. mention this possibility in a footnote, but the body
of their Letter is entirely concerned with the unitary game.
It seems to us that equilibria can be obtained only in the
maximally entangled two-player [3] unitary game when
the strategies are unnaturally constrained. This is not the
impression one gains from reading the Letter.
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