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Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition
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Following studies of olfactory processing in insects and fish, we investigate neural networks whose
dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions
(fixed points or limit cycles). These networks encode input information as trajectories along the hetero-
clinic connections. If there are N neurons in the network, the capacity is approximately e�N 2 1�!, i.e.,
much larger than that of most traditional network structures. We show that a small winnerless compe-
tition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information
into a spatiotemporal output.
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Information about the environment is generally encoded
into spike sequences by neurons in animal sensory nervous
systems [1]. There is a growing body of evidence [2–6]
that, in some systems, the representation of information
comes through both identity and temporal encoding: each
stimulus is characterized by a specific and reproducible
sequence of firing across specific neurons [7]. To build
a reasonable dynamical theory of such an encoding, we
must first understand the principles on which the dynam-
ics of these sensory networks is based and predict some
advantages that such stimulus representation has for fur-
ther processing.

We explore a class of dynamical systems that we call
competitive networks or winnerless competition (WLC)
networks. These produce identity-temporal or spatiotem-
poral coding in the form of deterministic trajectories
moving along heteroclinic orbits that connect saddle
fixed points or saddle limit cycles in the system’s state
space. These saddle states correspond to the activity of
specific neurons or groups of neurons, and the separatrices
connecting these states correspond to sequential switching
from one state to another.

We use observed features of olfactory processing
networks [2] as a guide to our study of computation using
competitive networks. Figure 1 shows the simultaneously
recorded activity of three different projection neurons
(PNs) in the locust antennal lobe (AL) evoked by two
different odors: despite similar PN activities before the
stimulus onset (the result of the action of noise) each
odor evokes a specific spatiotemporal activity pattern that
results from interactions between these and other neurons
in the network [2,8].

Using this experimental data and knowledge about the
anatomy and physiology of the AL we hypothesize that
such olfactory networks form, store, and recognize pat-
terns using a WLC strategy. The experiments on which our
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ideas are based indicate the following features of neural en-
coding: the representation of input (sensory) information
(i) uses both identity (or “space”) and time, (ii) sensitively
depends on the stimulus, (iii) is deterministic and repro-
ducible, and (iv) is robust against noise. These observa-
tions suggest (a) that a dynamical system which possesses

FIG. 1. The temporal patterns produced by three simultane-
ously sampled PNs in the locust antennal lobe when two differ-
ent odors are presented. The horizontal bar indicates the time
interval when the stimulus was presented (see [8] for details).
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these characteristics should be strongly dissipative so that
orbits rapidly “forget” the state of the system when the
stimulus is turned on and (b) that the system represents
information by transient trajectories, rather than attractors
(regular or strange), of the unstimulated system. The sys-
tem cannot have multistability because noise could drive
the system to an inappropriate “representation,” possibly
that of a different environmental stimulus. Our competi-
tive systems possess the desired characteristics.

We illustrate our ideas with examples from net-
works of N neurons with dynamical variables yi�t� �
� y1

i �t�, y2
i �t�, . . . , ym

i �t��; i � 1, 2, . . . , N . y1
j �t� is the

neuron membrane potential. We consider

dyi�t�
dt

� F� yi�t�� 2

NX
j�1

Gij�S� ? � y1
j �t�, y1

i �t�� 1 S̃i�t� ,

(1)

where F�yi� is the nonlinear function that describes the
dynamics of individual neurons. Gij�S� ? �· · ·� is a non-
linear operator describing inhibitory action of the jth neu-
ron onto the ith neuron. S�t� � �Si�t�� and S̃�t� are the
vectors representing stimuli to the network.

From experiments [2] we infer that a stimulus acts in two
principal ways: (i) it excites a subset of neurons through
the additive S̃�t� in (1); (ii) it modifies the effective in-
hibitory connections between the neurons through Gij�S�
in (1). In the insect antennal lobe, for example, this modi-
fication occurs as a result of activation of the inhibitory
interneurons that connect different PNs, e.g., different yi .
The intrinsic dynamics of these neurons is governed by
many variables corresponding to ion channels and intra-
cellular processes. Such a detailed description, however,
is not needed to illustrate the principle of “coding with
separatrices.” We need only capture the “firing” or “not-
firing” state of the component neurons. We thus simplify
our model to an equation for the firing rate ai�t� . 0 of
neural activity:

dai�t�
dt

� ai�t�

"
si�S� 2

√
ai 1

NX
jfii

rij�S�aj�t�

!#

1 S̃i�t� . (2)

We used here the nonlinear inhibitory operator G: G�S� ?
�ai , aj� � rij �S�aiaj, where rij�S� is the strength of in-
hibition of neuron j onto i. si�S̃� � 21 when there is no
stimulus, and 11 when the stimulus has a component at
neuron i. When si � 21, the quiet resting state ai � 0 is
stable. When a stimulus is applied and si � 11, the sys-
tem moves away from this quiet state onto a sequence of
heteroclinic trajectories. This instability triggers the sys-
tem into rapid action, provides robustness against noise,
and allows a response independent of the state at stimu-
lus onset. We neglect the dynamics of the synaptic con-
nections because we do not account for spike dynamics.
For the “average” description of neurons, synapses can
be considered as “nonlinear triggers.” [Equation (2) is a
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Lotka-Volterra equation.] These have been analyzed in de-
tail for N � 3 and S � S̃ � 0 in [9–11].

To begin, we ignore the additive sensory input in (2).
This tells us how the network operates and allows an es-
timation of its encoding capacity. Information about the
input resides solely in the couplings rij�S�. If the in-
hibitory connections for a specific stimulus are symmetric
rij � rji and identical rifij � r, rii � 1, the dynamics
is very simple. For weak coupling, r , 1, the system has
a global attractor: the stable fixed point ai � 1

11r�N21�
corresponding to simultaneous activity of all neurons. If
r . 1 the system is multistable: depending on the initial
conditions, one neuron becomes active and the others are
quiet. When the inhibitory connections are not symmetric,
the system with N competitive neurons has different closed
heteroclinic orbits that consist of saddle points and one-
dimensional separatrices connecting them. Such hetero-
clinic orbits are global attractors in phase space and are
found in various regimes of the rij�S�. This implies that,
if the stimulus is changed, another orbit in the vicinity of
the heteroclinic orbit becomes a global attractor for this
stimulus. C, the capacity of the network, indicates the
number of different items which the network may thus
encode through its activity. To have a closed heteroclinic
orbit, N $ 3. Each saddle fixed point on the closed hetero-
clinic orbit must have one positive eigenvalue. The other
N 2 1 are negative so that all other directions are attracted
to the saddle. Movement from saddle point to saddle point
results. The sequence from fixed point i to fixed point j
must occur when rii � 1, rij . 1, and rji , 1 [12]. The
only positive eigenvalue of the Jacobian at the fixed point
is J � 1 2 rji .

C can be estimated as follows. If we satisfy the con-
ditions for one heteroclinic orbit to exist, we can build
another from it by permuting the indices of the ai and
of the matrix rij . There are N ! permutations of the in-
dices. Some of these generate the same heteroclinic orbit:
firing as �1, 2, 3, 4, 5� or �2, 3, 4, 5, 1� is equivalent. For a
given permutation there are N 2 1 permutations that are
cyclically equivalent. The number of heteroclinic orbits
involving all N neurons is �N 2 1�!. There are still more
heteroclinic orbits. These are associated with the N 2 1,
N 2 2, . . . dimensional subspaces which can be selected
by eliminating one saddle point at a time from allowed or-
bits. The total number of these is the capacity C,

C �
NX

k�3

µ
N

k

∂
�k 2 1�! � N!

NX
k�3

1
k�N 2 k�!

so C . N! 1
N

PN23
k�0

1
k! and C , N ! 1

3

PN23
k�0

1
k! . For

large N ,µ
1 2

1
e�N 2 2�!

∂
,

C
e�N 2 1�!

,
N

3

µ
1 2

1
e�N 2 2�!

∂
.

A WLC network’s rich behavior can be illustrated when
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we connect spiking FitzHugh-Nagumo (FN) [13] model
neurons with the inhibitory interactions of our general
framework. The network we studied is described by (i �
1, 2, . . . , 9):

t1
dxi�t�

dt
� f�xi�t�� 2 yi�t� 2 zi�t� �xi �t� 2 n�

1 0.35 1 Si ,

dyi�t�
dt

� xi�t� 2 byi�t� 1 a ,
(3)

t2
dzi�t�

dt
�

X
j

gjiG�xj �t�� 2 zi�t� .

Here we use a dynamical model of inhibition: zi�t� is
a synaptic current modeled by first-order kinetics. The
variable xi�t� denotes the membrane potential, yi�t� is a
recovery variable, and f�x� � x 2

1
3 x3 is the internal FN

nonlinearity. The stimulus is taken as a constant. We use a
step function for G�x� � 0, x # 0, and G�x� � 1, x . 0,
as the synaptic connection. Si is the stimulus, and gji is the
strength of synaptic inhibition: gji � 2 if the jth neuron
inhibits the ith; 0 otherwise. The other parameters are
a � 0.7, b � 0.8, t1 � 0.08, t2 � 3.1, and n � 21.5.

Our numerical simulations show that the network
produces different spatiotemporal patterns in response to
different stimuli. Figure 2 presents examples of these ac-
tivities corresponding to two different stimuli. The system
was in the resting state xi � 21.2, yi � 20.62, zi � 0
before the stimulus began at t � 0. As one can see, the
patterns are considerably different and distinguishable.

FIG. 2. The spatiotemporal patterns generated by a network
of nine FitzHugh-Nagumo neurons with inhibitory connections.
We used the external stimuli: S1 � 0.1, S2 � 0.15, S3 � 0,
S4 � 0, S5 � 0.15, S6 � 0.1, S7 � 0, S8 � 0, S9 � 0, t2 �
3.1 (left), and S1 � 0.01, S2 � 0.03, S3 � 0.05, S4 � 0.04,
S5 � 0.06, S6 � 0.02, S7 � 0.03, S8 � 0.05, S9 � 0.04, t2 �
4.1 (right). The coefficients g15, g52, g21, g24, g45, g52, g65, g26,
g36, g53, g74, g57, g84 , g58, g86, g89, and g95 are equal to 2 and
the other gji are equal to 0. We plot xi �t� versus time.
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To characterize the network as a processing device, we
ask how well it carries information from input to output
and ask if temporal coding is needed to make this com-
munication effective. We first specify how we represent
input and output information; we must define the input
and output coding spaces. In our nine neuron model (3)
each element may receive an excitatory input Si . The in-
put signal is binary: each element is excited or not. So we
can represent the net input as a nine-digit binary number
d � d1, . . . , d9: di � 1, if Si . 0, and di � 0, if Si � 0,
for i � 1, . . . , 9. The output of each element xi�t� is also
considered to be binary. At any time the outputs of all
nine elements can be given as a nine-digit binary num-
ber b � b1, . . . , b9 with bi � 1, if xi . 0, and bi � 0, if
xi # 0. The time-dependent output over a time KL is rep-
resented as K sequences of binary numbers of length L:
QL

k � �b1, b2, . . . , bL�, k � 1, 2, . . . , K.
To investigate the robustness and reproducibility of the

representation of the stimulus we generated D random in-
put signals d1, . . . , dD , and then evaluated the output from
Eq. (3) for each input di using different network initial
conditions selected randomly from inside a sphere in state
space with radius r, centered at zero. A total of K different
output sequences QL

k , k � 1, . . . , K were recorded corre-
sponding to all inputs d1, . . . , dD and all initial conditions.
The calculations were performed for two different radii r
of initial conditions to examine reliability against noise.
To illustrate the dependence of information transfer on the
length L of the output sequence, namely, the role of time
in the output encoding, we determined the average mutual
information I�L� between input and output sequences

I�L� �
DX

i�1

KX
k�1

P�di , QL
k � log

Ω
P�di ,QL

k �
P�di �P�QL

k �

æ
,

where P�di , QL
k � is the joint probability distribution of in-

puts and outputs, P�di� is the distribution of inputs, and
P�QL

k � is the probability of output sequences. We drew
the di from a uniform distribution: P�di � � 1�D. I�L� an-
swers the question: On average over all inputs and all out-
puts, how much information about the input sequences di

do we learn by observing the output sequences QL
k ? I�L�,

as a function of the output sequence length L with differ-
ent radii r of initial conditions, is presented in Fig. 3. One
can see that I�L� reaches its maximum allowed value, the
entropy of the input signal, when L $ 4. D � 10 in these
calculations. From these results we see that full informa-
tion about the inputs (sensory stimuli) can be found in the
outputs (heteroclinic orbits connecting the clusters of FN
models) for output sequences larger than 3. Further, this
occurs in a manner largely insensitive to the system noise
level provided one decodes this sequence of length L . 3.
We conclude that temporal encoding, namely, L . 1, is re-
quired to achieve a good representation of the input data.

We have investigated a class of neural network models
whose stimulus-dependent dynamics reproduces the rich
068102-3
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FIG. 3. Average mutual information I�L� as a function of out-
put sequence length L and noise radius r .

spatiotemporal features observed in insect olfactory sys-
tems [2,7]. The principle of such a representation relies
on the fact that specific trajectories act as global attractors
in state space. This behavior corresponds to experimental
data, showing that activity proceeds across parts of the
insect olfactory processing network by the sequential
activation and deactivation of subgroups of neurons. This
“activation path” within the network is the global attractor
which appears under the action of the stimulus in the
neighborhood of the heteroclinic orbit. A stimulus can thus
be thought of as an informational signal that reorganizes
the global attractor in a stimulus-specific manner, forcing
the system to evolve through state space along a transient,
but deterministic, path joining unstable “saddle states.”
Once the stimulus ceases, each active neuron returns to its
baseline activity, controlled by intrinsic properties, basal
connection strengths, and noise. The properties of these
simplified models can also emerge from more realistic
networks having the same dominance of asymmetrical
inhibitory connections. We conjecture that a large network
with sparse, random connections will effectively exhibit
the same stimulus-dependent sequential activation and
deactivation of subgroups of neurons [8]. WLC encoding
is very sensitive to the forcing stimulus. This is because
the heteroclinic linking of a specific set of saddle points or
cycles is always unique. Two like stimuli, activating
greatly overlapping subsets of the network, may thus
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become easily separated and recognized at the next step
of the processing because small initial differences will be
amplified in time. This is verified experimentally in the
fish olfactory bulb [14]. Our central idea does not depend
on the nature of the stimulus. It may thus apply to brain
circuits other than olfactory processing systems. It may
perhaps underlie interesting experimental observations
such as the flipping between quasistationary states of ac-
tivity seen in a monkey cortex [15]. Beyond the biological
observations which suggested these investigations, WLC
networks provide an attractive model for computation
because of their large capacity as well as their robustness
to noise contamination.
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