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Typical address-oriented computer memories cannot recognize incomplete or noisy information. As-
sociative (content-addressable) memories solve this problem but suffer from severe capacity shortages.
I propose a model of a quantum memory that solves both problems. The storage capacity is exponential
in the number of qbits and thus optimal. The retrieval mechanism for incomplete or noisy inputs is
probabilistic, with postselection of the measurement result. The output is determined by a probability
distribution on the memory which is peaked around the stored patterns closest in Hamming distance to
the input.
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Quantum computation [1] is normally associated with
new complexity classes which are inaccessible (in polyno-
mial time) to classical Turing machines. In other words,
quantum algorithms [2] can drastically speed up the so-
lution of tasks with respect to their classical counterparts,
the paramount examples being Shor’s factoring algorithm
[3] and Grover’s search algorithm [4].

There is, however, another aspect of quantum computa-
tion which represents a big improvement upon its classical
counterpart. In traditional computers the storage of infor-
mation requires setting up a lookup table (RAM). The
main disadvantage of this address-oriented memory sys-
tem lies in its rigidity. Retrieval of information requires a
precise knowledge of the memory address and, therefore,
incomplete or noisy inputs are not permitted.

In order to address this shortcoming, models of asso-
ciative (or content-addressable) memories [5] were intro-
duced. Here, recall of information is possible on the basis
of partial knowledge of their content, without knowing the
storage location. These are examples of collective com-
putation on neural networks [5], the best known example
being the Hopfield model [6] and its generalization to a
bidirectional associative memory [7].

While these models solve the problem of recalling in-
complete or noisy inputs, they suffer from a severe capacity
shortage. Because of the phenomenon of crosstalk, which
is essentially a manifestation of the spin glass transition [8]
in the corresponding spin systems, the maximum number
of binary patterns that can be stored in a Hopfield network
of n neurons is pmax � 0.14n [5]. While various possible
improvements can be introduced [5], the maximum num-
ber of patterns remains linear in the number of neurons,
pmax � O�n�.

In this Letter I show that quantum mechanical entan-
glement provides a natural mechanism for both improving
dramatically the storage capacity of associative memories
and retrieving noisy or incomplete information. Indeed,
the number of binary patterns that can be stored in such a
quantum memory is exponential in the number n of qbits,
pmax � 2n; i.e., it is optimal in the sense that all binary
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patterns that can be formed with n bits can be stored. The
retrieval mechanism is probabilistic, with postselection of
the measurement result. This means that one has to re-
peat the retrieval algorithm until a threshold T is reached
or the measurement of a control qbit yields a given re-
sult. In the former case the input is not recognized. In
the latter case, instead, the output is determined itself by
a probability distribution on the memory which is peaked
around the stored patterns closest (in Hamming distance)
to the input. The efficiency of this information retrieval
mechanism depends on the distribution of the stored pat-
terns. Recognition efficiency is best when the number of
stored patterns is very large while identification efficiency
is best for isolated patterns which are very different from
all other ones, both very intuitive features.

Let me start by describing the elementary quantum
gates [2] that I use in the rest of the Letter. First of all
there are the single-qbit gates NOT, represented by the
first Pauli matrix s1, and H (Hadamard), with the matrix
representation

H �
1
p

2

µ
1 1
1 21

∂
. (1)

Then, I use extensively the two-qbit XOR (exclusive OR)
gate, which performs a NOT on the second qbit if and only
if the first one is in state j1�. In matrix notation this gate is
represented as XOR � diag�1, s1�, where 1 denotes a two-
dimensional identity matrix and s1 acts on the components
j01� and j11� of the Hilbert space. The 2XOR, or Toffoli
gate [9], is the three qbit generalization of the XOR gate:
it performs a NOT on the third qbit if and only if the first
two are both in state j1�. In matrix notation it is given by
2XOR � diag�1, 1, s1�. In the storage algorithm I make
use also of the nXOR generalization of these gates, in
which there are n control qbits. This gate is also used
in the subroutines implementing the oracles underlying
Grover’s algorithm [2] and can be realized using unitary
maps affecting only a few qbits at a time [9], which makes
it feasible. All these are standard gates. In addition to
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them I introduce the two-qbit controlled gates

CSi � j0� �0j ≠ 1 1 j1� �1j ≠ Si ,

Si �

0
B@

q
i21

i
1
p

i
21
p

i

q
i21

i

1
CA ,

(2)

for i � 1, . . . , p. These have the matrix notation CSi �
diag�1, Si�. For all these gates I indicate by subscripts the
qbits on which they are applied, the control qbits coming
always first.

Given p binary patterns pi of length n, it is not diffi-
cult to imagine how a quantum memory can store them.
Indeed, such a memory is naturally provided by the fol-
lowing superposition of n entangled qbits:

jM� �
1
p

p

pX
i�1

jpi � . (3)

The only real question is how to generate this state unitarily
from a simple initial state of n qbits. To this end one
can use the algorithm proposed in [10]. Here, however, I
propose a simplified version.

In constructing jM� I use three registers: a first register
p of n qbits in which I subsequently feed the patterns pi to
be stored, a utility register u of two qbits prepared in state
j01�, and another register m of n qbits to hold the memory.
This latter is initially prepared in state j01, . . . , 0n�. The
full initial quantum state is thus

jc1
0 � � jp1

1 , . . . , p1
n ; 01; 01, . . . , 0n� . (4)

The idea of the storage algorithm is to separate this state
into two terms, one corresponding to the already stored
patterns and another ready to process a new pattern. These
two parts are distinguished by the state of the second utility
qbit u2: j0� for the stored patterns and j1� for the process-
ing term.

For each pattern pi to be stored one has to perform the
operations described below:

jci
1� �

nY
j�1

2XORpi
ju2mj

jci
0� . (5)

This simply copies pattern pi into the memory register of
the processing term, identified by ju2� � j1�.

jci
2� �

nY
j�1

NOTmj XORpi
jmj

jci
1� ,

jci
3� � nXORm1...mnu1

jci
2� .

(6)

The first of these operations makes all qbits of the memory
register j1�’s when the contents of the pattern and memory
registers are identical, which is exactly the case only for the
processing term. Together, these two operations change the
first utility qbit u1 of the processing term to a j1�, leaving
it unchanged for the stored patterns term.

jci
4� � CSp112i

u1u2
jci

3� . (7)

This is the central operation of the storing algorithm. It
separates out the new pattern to be stored, already with the
correct normalization factor.
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jci
5� � nXORm1...mnu1 jc

i
4� ,

jci
6� �

1Y
j�n

XORpi
jmj

NOTmj
jci

5� .
(8)

These two operations are the inverse of Eqs. (6) and re-
store the utility qbit u1 and the memory register m to their
original values. After these operations one has

jci
6� �

1
p

p

iX
k�1

jpi; 00; pk � 1

s
p 2 i

p
jpi; 01; pi � .

(9)
With the last operation,

jci
7� �

1Y
j�n

2XORpi
ju2mj

jci
6� , (10)

one restores the third register m of the processing term,
the second term in Eq. (9) above, to its initial value
j01, . . . , 0n�. At this point one can load a new pattern
into register p and go through the same routine as just
described. At the end of the whole process, the m register
is exactly in state jM�, Eq. (3).

Assume now one is given a binary input i, which might
be, e.g., a corrupted version of one of the patterns stored
in the memory. The first step of the information recall
process is to make a copy of the memory jM� to be used
in the retrieval algorithm described below. Because of the
no-cloning theorem [11], this cannot be done determinis-
tically (i.e., using only unitary operations); a faithful copy
of jM� can be obtained only with a probabilistic cloning
machine [12]. I thus assume the availability of a proba-
bilistic cloning machine for which jM� is one of the set of
linearly independent states that can be copied.

The retrieval algorithm requires also three registers. The
first register i of n qbits contains the input pattern; the sec-
ond register m, also of n qbits, contains the memory jM�;
finally there is a single qbit control register c initialized
to the state �j0� 1 j1���

p
2. The full initial quantum state

is thus

jc0� �
1

p
2p

pX
k�1

ji1, . . . , in; pk
1 , . . . , pk

n ; 0�

1
1

p
2p

pX
k�1

ji1, . . . , in; pk
1 , . . . , pk

n ; 1� . (11)

I now apply to it the following combination of quantum
gates:

jc1� �
nY

k�1

NOTmk XORikmk jc0� , (12)

where, as before, the subscripts on the gates refer to the
qbits on which they are applied. As a result of this, the
memory register qbits are in state j1� if ij and pk

j are
identical and j0� otherwise:

jc1� �
1

p
2p

pX
k�1

ji1, . . . , in; dk
1 , . . . , dk

n ; 0�

1
1

p
2p

pX
k�1

ji1, . . . , in; dk
1 , . . . , dk

n ; 1� , (13)
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where dk
j � 1 if and only if ij � pk

j and dk
j � 0

otherwise.
Consider now the following Hamiltonian:

H � �dH�m ≠ �s3�c ,

�dH �m �
nX

k�1

µ
s3 1 1

2

∂
mk

,
(14)

where s3 is the third Pauli matrix. H measures the num-
067901-3
ber of 0’s in register m, with a plus sign if c is in state
j0� and a minus sign if c is in state j1�. Given how I have
prepared the state jc1�, this is nothing else than the num-
ber of qbits which are different in the input and memory
registers i and m. This quantity is called the Hamming
distance and represents the (squared) Euclidean distance
between two binary patterns.

Every term in the superposition (13) is an eigenstate of
H with a different eigenvalue. Applying thus the unitary
operator exp�ipH �2n� to jc1� one obtains
jc2� � exp

µ
i

p

2n
H

∂
jc1� ,

jc2� �
1

p
2p

pX
k�1

exp

∑
i

p

2n
dH�i, pk �

∏
ji1, . . . , in; dk

1 , . . . , dk
n ; 0� (15)

1
1

p
2p

pX
k�1

exp

∑
2i

p

2n
dH�i, pk �

∏
ji1, . . . , in; dk

1 , . . . ,dk
n ; 1� ,

where dH�i, pk� denotes the Hamming distance between the input i and the stored pattern pk .
In the final step I restore the memory gate to the state jM� by applying the inverse transformation to Eq. (12) and I

apply the Hadamard gate (1) to the control qbit, thereby obtaining

jc3� � Hc

1Y
k�n

XORikmk NOTmk jc2� ,

jc3� �
1
p

p

pX
k�1

cos
p

2n
dH �i, pk� ji1, . . . , in; pk

1 , . . . , pk
n ; 0� (16)

1
1
p

p

pX
k�1

sin
p

2n
dH�i, pk � ji1, . . . , in; pk

1 , . . . , pk
n ; 1� .
This concludes the deterministic part of the information
retrieval process. At this point one needs a measurement
of the control qbit c. The probabilities for this to be in
states j0� and j1� are given by the expressions

P�jc� � j0�� �
pX

k�1

1
p

cos2
µ

p

2n
dH�i, pk�

∂
, (17)

P�jc� � j1�� �
pX

k�1

1
p

sin2

µ
p

2n
dH�i, pk �

∂
. (18)

If the input pattern is very different from all stored patterns,
one has a high probability of measuring jc� � j1�. On the
contrary, an input pattern close to all stored patterns leads
to a high probability of measuring jc� � j0�. One can thus
set a threshold T : if T repetitions of the retrieval algorithm
all lead to a measurement jc� � j1� one classifies the input
i as nonrecognized. If one gets a measurement jc� � j0�
before the threshold is reached, instead, one classifies the
input i as recognized and one can proceed to a measure-
ment of the memory register to identify it. This measure-
ment yields pattern pk with probability

P�pk � �
1

pP�jc� � j0��
cos2

µ
p

2n
dH �i, pk�

∂
. (19)

This probability is peaked around those patterns which
have the smallest Hamming distance to the input. The
highest probability of retrieval is thus realized for that
(those) pattern(s) which is (are) most similar to the input.
What about the efficiency of this information retrieval
mechanism? Contrary to any classical counterpart, this
efficiency depends here on two features: the threshold T
determining recognition and the shape of the probability
distribution in Eq. (19), determining the identification.
The threshold T should be optimally chosen according to
the probabilities in Eqs. (17) and (18) and depends thus
on the distribution of the stored patterns. Indeed, the
probability of recognition is determined by comparing
(squared) cosines and sines of the distances to the stored
patterns. It is thus clear that the worst case for recognition
is the situation in which there is an isolated pattern, with
the remaining patterns forming a tight cluster spanning
all the largest distances to the first one. Let me suppose
that p � O�nx �, x ø n, and assume for simplicity that
p � 1 1

Px
k�0� n

k � and the distribution is such that exactly
all patterns of distances dH � n, n 2 1, . . . , n 2 x to one
isolated pattern are stored. If one presents exactly this
isolated pattern as input, one of the (squared) cosines in
Eq. (17) is 1, while the rest all take the smallest possible
values, giving

P�jc� � j0�� .
1
p

1
p2

4n2 . (20)

In order to have the best recognition efficiency also in
this worst case, one should therefore choose the threshold
067901-3
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T � O�n� for x � 1 and T � O�n2� for n ¿ x $ 2.
While this entails a large number of repetitions, it is still
polynomial in the number n of qbits and thus tractable.
Note also that the required threshold diminishes when the
number of stored patterns becomes very large, since, in
this case, the distribution of patterns becomes necessar-
ily more homogeneous. Indeed, for the maximal num-
ber of stored patterns p � 2n one has P�jc� � j0�� � 1�2
and the recognition efficiency becomes also maximal, as
it should be. In the general case one can initially esti-
mate the p recognition probabilities of the patterns by set-
ting i � pk for k � 1, . . . ,p in Eq. (17). Letting Pmin

be the smallest of these, one can once and for all choose
the threshold T of this memory as the nearest integer to
1�Pmin. I do not discuss here a possible quantum speedup
of this calculation since the main point of the present Letter
is the exponential storage capacity with retrieval of noisy
inputs.

While the recognition efficiency depends on comparing
(squared) cosines and sines of the same distances in the
distribution, the identification efficiency of Eq. (19) de-
pends on comparing the (squared) cosines of the different
distances in the distribution. Specifically, it is best when
one of the distances is zero, while all others are as large as
possible, such that the probability of retrieval is completely
peaked on one pattern. As a consequence, the identifica-
tion efficiency is best when the recognition efficiency is
worst and vice versa.

Having described at length the information retrieval
mechanism for complete but possibly corrupted patterns,
it is easy to incorporate also incomplete ones. To this
end assume that only q , n qbits of the input are known
and let me denote these by the indices �k1, . . . , kq�. After
assigning the remaining qbits randomly, there are two
possibilities. One can treat just the resulting complete
input as a noisy one and proceed as above or, better, one
can limit the operator �dH �m in the Hamiltonian (14) to

�dH �m �
qX

i�1

µ
s3 1 1

2

∂
mki

, (21)

so that the Hamming distances to the stored patterns are
computed on the basis of the known qbits only. After this
the pattern recall process continues exactly as described
above. This second possibility has the advantage that it
does not introduce random noise in the similarity measure,
but it has the disadvantage that the operations of the mem-
ory have to be adjusted to the inputs.

This brings me to the last point, the feasibility of the de-
scribed algorithms. In this context I point out that, in ad-
dition to the standard NOT, H (Hadamard), XOR, 2XOR
(Toffoli), and nXOR gates [2] I have introduced only the
two-qbit gates CSi in Eq. (2) and the unitary operator
exp�ipH �2n�. It remains thus to show only that this lat-
ter can be realized by simple gates involving few qbits. To
this end I introduce the single-qbit gate
067901-4
U �

µ
exp�i p

2n � 0
0 1

∂
, (22)

and the two-qbit controlled [2] gate

CU22 � j0� �0j ≠ 1 1 j1� �1j ≠ U22. (23)

It is then easy to check that exp�ipH �2n� can be realized
as follows:

exp

µ
i

p

2n
H

∂
jc1� �

nY
i�1

�CU22�cmi

nY
j�1

Umj jc1� , (24)

where c is the control qbit in the first series of gates. Essen-
tially, this means that one implements first exp�ipdH �2n�
and then one corrects by implementing exp�2ipdH�n� on
that part of the quantum state for which the control qbit
jc� is in state j1�. This completes the proof of feasibility.

It remains to point out that the information retrieval
algorithm can be, in principle, generalized by substituting
the Hamiltonian (14) with

H � 	 f�dH �
m ≠ �s3�c , (25)

where f is any function satisfying f�0� � 0 and f�n� � n.
Such a generalization would above all have an influence
on the identification efficiency by changing the shape of
the probability distribution on the memory, which can be
made narrower around the input. One can also give differ-
ent weights to different qbits by introducing a nontrivial
metric. The only restriction on all these generalizations is,
as always, the feasibility of the resulting unitary evolution.
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