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Long-Range Order and Low-Energy Spectrum of Diluted 2D Quantum Antiferromagnet
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The problem of a diluted two-dimensional quantum antiferromagnet on a square lattice is studied using
spin-wave theory. The influence of impurities on static and dynamic properties is investigated and a good
agreement with experiments and Monte Carlo data is found. The hydrodynamic description of spin waves
breaks down at characteristic wavelengths L * exp�const�x�, x being an impurity concentration, while
the order parameter is free from anomalies. We argue that this dichotomy originates from strong scattering
of the low-energy excitations in two dimensions.
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The interest in magnetic properties of high-Tc com-
pounds has been a major driving force of intensive stud-
ies of low-dimensional magnetic systems during the last
decade [1]. One such system is the La2Cu12xZn�Mg�xO4,
a parental compound doped with static vacancies, which
shows greater stability of the antiferromagnet (AF) or-
der against doping than its mobile hole doped counterpart
La22xSrxCuO4 [2,3]. It represents a fine example of a di-
luted 2D quantum S � 1�2 AF whose properties are the
subject of this study. The problem of diluted spin sys-
tems has attracted much attention in the past [4,5] and their
physics is well understood. The general understanding is
that the low-energy excitations of these systems are weakly
damped spin waves which belong to the infinite cluster [5]
and are well defined up to the percolation threshold. In
this work we show that quantum effects and low dimen-
sionality prevent the excitation spectrum to be defined in
these hydrodynamic terms [6] at arbitrarily small doping
and lead to a paradoxical situation where the long-range
order is preserved but the long-wavelength spectrum is not
ballistic.

The site-diluted AF on a square lattice is described by

H � J
X
�ij�

pipjSi ? Sj , (1)

with pi � 1�0� for the magnetic (nonmagnetic) site. The
pure system at long wavelengths can be described by the
nonlinear s model [1]. Its applicability in the presence of a
quenched disorder has been questioned [1] since impurities
destroy the Lorentz invariance of the model. Some gener-
alizations of the s model have, nevertheless, been pro-
posed with parameters modified according to Monte Carlo
(MC) data [7] and the classical percolation theory [8].

In this work we study the problem of disorder using
the t-matrix approach combined with a configurational av-
erage over the random positions of impurities. It also
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leads to description of the system in terms of an effective
medium with renormalized parameters. In an earlier work
Harris and Kirkpatrik [4] have shown that in 2D a non-
hydrodynamic term appears in the spin-wave self-energy
which explicitly violates Lorentz invariance: Sk�v� ~

xk�lnjvj 2 ip�2�. A recent study by Wan et al. [9] has
confirmed this result. One can show that the spectrum
is overdamped at wavelengths L * exp�p�4x� which im-
plies the existence of a new length scale in the system.
The absence of a well-defined long-wavelength mode also
suggests that the true order should be unstable under an
infinitesimal impurity doping, or that d � 2 is the upper
critical dimension for this problem [4].

In this work we study the effect of impurities on the
spectrum, staggered magnetization, M�x�, and Néel tem-
perature, TN �x�, to clarify the problem of stability of a
(quasi-)2D AF order. We show that neither M�x� nor
TN �x� possesses anomalous contributions which would im-
ply an instability. Thus, we have a somewhat paradoxical
situation when the spectrum is ill defined while the or-
der parameter is not affected. Such a dichotomy comes
from the strong influence of disorder in the low-energy
excitations in 2D. The averaging procedure, which ef-
fectively restores translational invariance, fails to recover
the long-wavelength excitation spectrum of this effective
medium [10]. The low-frequency modes do exist in some
form but they cannot be classified in terms of an effective
wave vector and thus the long-wavelength propagation is
entirely diffusive. This scheme implies an existence of a
disorder-induced energy scale which restricts the applica-
bility of the continuum approach.

We start with the Hamiltonian (1) in the spin-wave ap-
proximation H � H0 1 H

A
imp 1 H

B
imp:

H0 � 4SJ
X
k

vk�ay
kak 1 b

y
kbk� , (2)
H A
imp � 24SJ

X
l[A,k,k0

ei�k2k0�Rl �V aa
A,kk0a

y
kak0 1 V

bb

A,kk0b
y
kbk0 1 V

ab

A,kk0 �ay
kb

y
2k0 1 H.c.�� , (3)

where the quadratic part of the pure host Hamiltonian H0 is diagonalized using Bogolyubov transformation:
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S
y
k,A�

p
2S � ak � ukak 1 ykb

y
2k, S

y
k,B�

p
2S � b

y
k �

ukb
y
k 1 yka2k, A and B denote the sublattices, with

u2
k 2 y

2
k � 1, 2ukyk � 2gk�vk, gk � �cos�kx� 1

cos�ky���2, and bare spin-wave frequency vk �q
1 2 g

2
k. All momenta belong to the magnetic Brillouin

zone kx 1 ky # p. H
B

imp � H
A

imp�A ! B�, interac-

tions are given by V aa
A � V

bb
B � u1u2 1 g122y1y2 1

g1y1u2 1 g2y2u1, V
bb
A � Vaa

B � y1y2 1 g122u1u2 1

g1u1y2 1 g2u2y1, and V
ab
A,1,2 � V

ab
B,2,1 � u1y2 1

g122y1u2 1 g1y1y2 1 g2u2u1, l runs over the impurity
sites. As a first step we solve the scattering problem for
the single impurity. Since the impurity potential is short
ranged one uses the t-matrix approach. The advantage
of this method is that the single impurity problem can be
solved exactly (within the spin-wave approximation) [11].
Therefore, the results of this approach become exact in
the dilute limit x ! 0.

In our case the square lattice site defect scatters only in
s-, px-, py-, and d-symmetric channels, and one needs
to solve the t matrix for each harmonic. The t-matrix
equations are

Gaa
A,i � 2Vaa

A,i 2 Vaa
A,i G0

aGaa
A,i 2 V

ab
A,i G0

bG
ab
A,i ,

G
ab
A,i � 2V

ab
A,i 2 V

bb
A,i G0

bG
ab
A,i 2 V aa

A,i G0
aGaa

A,i ,
(4)

where Vi’s are the i � s, px, py , d components of V’s (3).
We suppress k and v in vertex functions Gi�k, k0, v�,
bare Green’s functions G0

a�k, v� � G0
b�k, 2v� �

	v 2 vk 1 i0
21, and interactions Vkk0 . Products VGG

involve summation over the internal momenta, all energies
are in units of 4SJ. An equivalent set of equations
gives the vertices G

bb
A,i . For the impurity in B sublattice

GB,i � GA,i�a $ b�. Since the impurity potential in each
partial wave is separable: V aa

A,s � ukvkuk0vk0 , V aa
A,ps

�

fks
ykfk 0

s
yk0�2, Vaa

A,d � g
2
k ykg

2
k0yk0 , V

bb
A,i � Vaa

A,i �u $

y�, V
ab
A,s � 2ukvkyk0vk0 , V

ab
A,ps

� fks
ykfk 0

s
uk0�2,

V
ab
A,d � g

2
k ykg

2
k0uk0 , where fks

� sin�ks�, g
2
k �

�cos�kx� 2 cos�ky���2, Eqs. (4) can be readily solved:
G

ss 0

A,i �k, k0, v� � 2Vss 0

A,i �k, k0�G̃i�v�, where

G̃s�v� � 21�v 2 �1 1 v�r�v���1 2 v�1 1 v�r�v�� ,

G̃p�v� � 2�	1 1 v 1 �1 2 v� �v2r�v� 2 rd�v��
 , (5)

G̃d�v� � 1��1 1 �1 2 v�rd�v�� ,

with r �
P

p 1��v2 2 v2
p� and rd �

P
p�g2

p �2��v2 2

v2
p�, which can be expressed through the complete elliptic

integrals [12]. For the impurity in B sublattice G
ss 0

B,i �
2Vss 0

B,i G̃i�2v�. The s-wave scattering (5) reveals a
zero-frequency mode which originates from the oscilla-
tions of the fictitious degrees of freedom at the impurity
site. Roughly speaking, since in the spin-wave approxi-
mation spins are quantized through bosons even if S0 at
the impurity site is set to zero there is still a

y
0 a0 left in
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Sz
0 (for discussion, see Ref. [9]). This gives rise to the

unphysical zero-frequency mode which has to be projected
out. We do so by introducing magnetic fields at the impu-
rity sites (similar to Refs. [13,14]) DH � Hz

P
l a

y
i ai .

Within this approach after straightforward algebra [12]
in the limit Hz ! ` one obtains G

ss 0

A,s �k, k0, v� �
2Vss 0

A,s �k, k0�G̃s�v� 1 DG
ss 0

A,s �k, k0, v�,

G̃s�v� � 2�1 1 v�r�v���1 2 v�1 1 v�r�v�� , (6)

which is free from the zero-frequency pole. DG
aa
A,s �

ukuk0�vk 1 vk0 2 v�, DG
bb
A,s � 2ykyk0�vk 1 vk0 1

v�, DG
ab
A,s � 2ukyk0 �vk 2 vk0 1 v�. GB � GA 3

�2v� 	a $ b
 as before, p and d waves are not affected
by the projection.

The next step is the averaging procedure which
restores translational invariance. Assuming ran-
dom distribution of impurities one readily transforms
scattering vertices into the spin-wave self-energies:
S

ss 0

k �v� �
P

i S
ss 0

i,k �v�, with S
ss 0

i,k �v� � xdk2k0 3

�Gss 0

A,i �k, k0, v� 1 G
ss 0

B,i �k, k0, v��

Saa
s,k �v��x � 2v2

k�u2
kG̃s�v� 1 y2

kG̃s�2v��
1 2vk 2 v ,

S
aa
p�d�,k�v� � xA

p�d�
k �y2

kG̃p�d��v� 1 u2
kG̃p�d��2v�� , (7)

S
ab
i,k �v� � xBi

k�G̃i�v� 1 G̃i�2v�� ,

S
bb
i,k �v� � Saa

i,k �2v� ,

where A
p
k � 2v

2
k 1 �g2

k �2, Ad
k � 2�g2

k �2, Bs
k �

v
2
kukyk, B

p
k � A

p
kukyk, Bd

k � Ad
kukyk. It is interesting

that “on shell” �v � vk� Eqs. (5) and (6) yield identical
Ss,k�vk�.

At low energies v, vk ! 0 self-energies are given by

Saa
k �v� � xvk�r�v� 1 2 2 p�2�

2 xv 1 O �vkv2r3� ,

S
ab
k �v� � xvk�r�v� 1 p�2� 1 O �vkv2r3� ,

(8)

with r�v� � �2�p� ln�jvj�4� 2 i ,

which includes contributions from s- and p-wave scatter-
ing, Sd � O �v3

k�. One can see that besides the “normal”
softening of the long-wavelength mode and the damping
proportional to the higher power of k ��k3� one acquires
a nonlinear dispersion term with the damping g̃k�vk � x
having only parametric smallness with respect to the bare
spectrum. Renormalization of the real part of the spectrum
is dominated by the ln�jvj� term at low frequencies. A
naive “on-shell” pole equation ṽ

0
k � vk 1 ReS

aa
k �vk�

suggests a vanishing of the spectrum [9] and an instability
of the ground state. Consideration of the diagram-
matic series for the Green’s functions shown in Fig. 1
with self-energies defined in Eq. (7) and G11

k �v� �
	v 2 vk 2 S

aa
k �v�
21 gives
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FIG. 1. Belyaev diagram series for the diagonal, Gaa , and
off-diagonal, Gab , Green’s functions. Self-energies Saa (circle)
and Sab (square) are the configurational averages of Gaa and
Gab , respectively.

Gaa
k �v� �

G11
k �2v�21

�G11
k �v�G11

k �2v��21 2 �Sab
k �v��2

,

G
ab
k �v� �

S
ab
k �v�

�G11
k �v�G11

k �2v��21 2 �Sab
k �v��2

.

(9)

At k ¿ v0 � exp�2p�4x� spectral function reveals a
damped quasiparticle peak at v & k plus some structure
at low frequencies v � v0. At low k � v0 the quasipar-
ticle peak merges with this structure and disappears. The
spectrum is completely overdamped at k & v0. Beyond
this scale no hydrodynamic description is possible.

A potential concern is whether an anomaly in Eq. (8)
can be fixed by the higher order terms. General discus-
sion of this problem in terms of the susceptibility (Ref. [4])
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concluded that the divergency should be unrelated to the
expansion in x. One can also show that the summation
of the Green’s function series (9) and dressing of the in-
ner lines in self-energies using self-consistent equation on
r�v� and Gss actually enhance the anomaly.

In a complementary problem of a quasi-2D AF a small
interplane coupling a � J��J cuts off the log singular-
ity: r3D�v� � �1�p� ln�a�32� 1 iO �v� at v ,

p
2a.

Therefore a “safe” range of concentrations x , x� �
ln21�1�a� can be found where the long-wavelength quasi-
particles are still well defined deep in the 3D region of the
k space �L21 ø

p
a �. However, one should be able to

observe a nonlinearity of the spectrum and an abnormal
damping of the spin waves in the 2D long-wavelength
region �

p
a , L21 ø 1� similar to the quasi-1D problem

[15]. For the real materials a � 1024 giving x� � 20%.
Above the concentration x� all the low-energy excitations
are incoherent because the 2D disorder-induced scale v

21
0

is shorter than the 3D length 1�
p

a so the spin waves lose
coherence before they can propagate in 3D. The same
consideration applies to the case of small anisotropies in-
troducing gaps in the spectrum with a modified a � aeff
accumulating the total effect of the gaps and 3D coupling.

Now we proceed with quantities whose expansion in x
can be shown to be reliable. Staggered magnetization at
the magnetic site M�x� � M0 2 dM�x�, M0 � S 2 dl,
dM�x� �
X
k

��ay
kak� 2 gk�ay

kb
y
k���vk � 2

X
k

Z `

2`

n�v� dv

pvk
Im�Gaa

R,k�v� 2 gkG
ab
R,k�v�� , (10)
where dl �
P

k y
2
k � 0.1966 is from zero-point

fluctuations, n�v� � �ev�T 2 1�21 is the Bose occu-
pation number, index R denotes retarded. At T � 0
n�v� � 2u�2v� and integrals in (10) with Gss0

from
(9) can be taken numerically. It can be shown [12] that the
expansion in x for Gss 0

can be performed before the in-
tegration Gaa � G0

a 1 G0
aSaaG0

a , Gab � G0
bSaaG0

a

and that all integrals for the linear in x term are conver-
gent giving dM�x� � 0.209�8�x 1 O �x2�. For S � 1�2
M�x��M0 � 1 2 0.691�5�x. This linear slope together
with the results of calculations using Gss 0

from Eq. (9),
MC [16], and NMR data [17] are shown in Fig. 2.
Note that Fig. 2 and Eq. (10) show the reduction of the
magnetic moment by the quantum fluctuations induced
by impurities. In order to extract the same quantity from
the MC data [16], which are averaged over all sites, one
needs to deduct a probability of finding a spin-occupied
site from them. One can see a very good agreement of
our results with numerical data up to high concentrations.
The oxidation of the crystals can be the reason of a faster
decrease of M�x� in NMR data. The absolute value
of dM�x� is independent of S in the linear spin-wave
approximation similar to the quantum reduction of S by
dl. We plot dM�x� in Fig. 2 (right axes) in order to
emphasize the agreement with the MC data for S � 1�2
and S � 1, which show only weak S dependence.
The quantity which one would expect to exhibit a dif-
ferent behavior is TN for quasi-2D problem. The ther-
mal corrections to the staggered magnetization dMT �
T ln�T�v�jv�

p
a yield a finite TN � ln�1�a�21 for a pure

system. Since the original spectrum is bent from the linear
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−  MC,  S=1
−  theory
−  theory, linear−x
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FIG. 2. Left axes: reduction of the local magnetic moment
by the quantum fluctuations induced by impurities M�x��M�0�
from NMR (�, Ref. [17]) and MC (�, Ref. [16]) studies. Lines
show our results from Eq. (10). Right axes: the absolute value
of dM�x� from Eq. (10) (lines) and MC data, Ref. [16], for
S � 1�2 (�) and S � 1 (�).
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FIG. 3. Néel temperature vs x from mSR and susceptibility
measurements Refs. [19,20] for the La2Cu12xZn�Mg�xO4, and
the linear slope from our theory.

form this should manifest itself in the finite temperature
part of Eq. (10) as a stronger divergency. One indeed finds
such contributions in Eq. (10) ��xT ln2jvj� already in a
perturbative limit �x lnjvj ø 1�. However, these anoma-
lous terms from diagonal and off-diagonal parts cancel
each other. From the mean-field equation MTN �x� � 0 af-
ter some algebra one obtains (at a ! 0): TN �x��TN �0� �
1 2 xA with A � p 2 2�p 1 0.209�8��M0. For S �
1�2, A � 3.196�5� [18], which fits very well experimental
data [19,20]; see Fig. 3.

Thus the order is preserved up to a high x value [3,16]
while the long-wavelength spectrum is not well defined at
any x. Experimentally one would need to probe directly
the spin-wave spectrum close to the AF ordering vector and
look for anomalous broadening and nonlinearity. The ob-
served deviation from the simple exponential behavior of
the correlation length j�T , x� vs 1�T [3] might be related
to the character of the low-energy spectrum we discuss.

Another aspect relates our problem to the other problems
of disorder in 2D. We observe that some weight from ev-
ery mode is transferred to the low energies v � v0 which
can be understood as some sort of localization, though the
localization criteria for this problem is unclear. Altogether
these low-energy states result in a peak in the density of
states. From the x-expanded form of the Green’s function
Gaa � G0

a 1 G0
aSaaG0

a one readily gets N �v� �
2v�p 1 xC 1 O �xv lnjvj�, which implies a finite den-
sity of states at v � 0. With Gaa from Eq. (9) one ob-
tains N�v� 
 2v�p 1 xC���1 1 4x lnjvj�p�2 1 4x2�
which is zero strictly at v � 0 but has a sharp peak �1�x
at v � v0. This is very close to the dispute over N �v�
for the certain types of disorder in 2D systems with linear
excitation spectrum [10]. Note that in our case there is no
“weak” limit for disorder since the perturbation ��JSz� is
of the same strength as the pure coupling [21].

In conclusion, we have provided evidence for the sta-
bility of the long-range order in the 2D and quasi-2D
AF doped with static vacancies. At the same time the
067209-4
long-wavelength excitation spectrum is shown to be dif-
fusive for any value of doping, restricting a hydrodynamic
approach to the problem from low energies.
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