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We present an ab initio quantum theory of the finite-temperature magnetism of iron and nickel. A
recently developed technique which combines dynamical mean-field theory with realistic electronic struc-
ture methods successfully describes the many-body features of the one electron spectra and the observed
magnetic moments below and above the Curie temperature.
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The theory of itinerant electron ferromagnetism is one
of the central problems in condensed matter physics (for
reviews, see [1,2]). There is a need for a first principles ap-
proach which is able to describe ground state and thermo-
dynamical quantities, as well as the one particle spectral
properties of itinerant magnets. These quantities are cur-
rently being probed in spin-polarized tunneling as well as
spin-polarized photoemission experiments with a view to
possible applications as spin valves [3].

Iron and nickel are the oldest and experimentally best
studied prototypical systems, and serve as benchmarks for
electronic structure methods. At very low temperatures,
a bandlike description of Fe and Ni has been very suc-
cessful. The density functional theory (DFT) in the local
density approximations (LDA) gives a quantitatively accu-
rate description of several ground state properties of these
materials such as the ordered magnetic moment and the
spin wave stiffness [4] as calculated from the spin wave
dispersion.

While density functional theory can in principle provide
a rigorous description of the finite-temperature thermody-
namic properties, at present there is no accurate practical
implementing available. As a result the finite-temperature
properties of magnetic materials are estimated following a
simple suggestion [5], whereby constrained DFT at T � 0
is used to extract exchange constants for a classical Heisen-
berg model, which in turn is solved using approximation
methods (e.g., RPA, mean field) from classical statistical
mechanics of spin systems [5–8]. The most recent im-
plementation of this approach gives good values for the
transition temperature of iron but not of nickel [9]. While
these localized spin models give, by construction, at high
temperatures a Curie-Weiss-like magnetic susceptibility, as
observed experimentally in Fe and Ni, they encountered
difficulties in predicting the correct values of the Curie
constants [10].

It has been recognized for a long time, that to describe
the finite-temperature aspects of itinerant electron mag-
nets, one needs a formalism that takes into account the
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existence of local magnetic moments present above TC

[11,12]. This is one of the central problems in the physics
of strongly correlated electron systems, which forces us
to reconcile the dual character of the electron, which as
a particle requires a real space description and as a wave
requires a momentum space description in a unified frame-
work. A very successful method satisfying these require-
ments, the dynamical mean-field theory (DMFT) [13], has
been recently developed. This many-body scheme can be
combined with standard LDA band structure calculations
to include the effects of a realistic band structure [14,15].
Such an “LDA 1 DMFT” approach has been successfully
applied for the computations of electronic structure and
spin wave spectrum of iron [16,17]. Nevertheless the most
difficult and interesting finite-temperature effects were not
considered previously and are the subject of this Letter.

Here we present realistic LDA 1 DMFT calculations of
finite-temperature magnetic properties of iron and nickel.
A numerically exact quantum Monte Carlo (QMC) scheme
is used for the solution of the DMFT equations. We find
that a consistent first principles description of the magnetic
properties and of the one electron spectra of iron and nickel
is possible, within an approach that makes only two essen-
tial approximations: the locality of the electron self-energy
and of the particle hole irreducible vertex [13].

There have been numerous efforts to construct a many-
body theory of these materials, for example, using the
T -matrix theory [18], a self-consistent moment method
[19], local 3-body equations [20,21], and the GW [22] ap-
proximations. The LDA 1 DMFT approach goes beyond
these works in the treatment of a realistic orbitally degen-
erate band structure, and in the treatment of the many-body
interactions.

We start with the LDA Hamiltonian in the tight-binding
orthogonal linear muffin-tin orbital representation
HLDA

mm0 �k� [23], where m describes the orbital basis set con-
taining 3d, 4s, and 4p states, and k runs over the Brillouin
zone (BZ). The interactions are parametrized by a matrix
of screened local Coulomb interactions Umm0 and a matrix
© 2001 The American Physical Society 067205-1
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of exchange constants Jmm0 , which are expressed in terms
of two screened Hubbard parameters U and J, describing
the average Coulomb repulsion and the intra-atomic
ferromagnetic exchange respectively. We use the values
U � 2.3�3.0� eV for Fe (Ni) and the same value of the
intra-atomic exchange, J � 0.9 eV for both Fe and Ni,
a result of constrained LDA calculations [14,15,24,25].
These parameters which are consistent with those of many
067205-2
studies result in a very good description of the physical
properties of Fe and Ni.

Dynamical mean-field theory maps the many-body sys-
tem onto a multiorbital quantum impurity, i.e., a set of local
degrees of freedom in a bath described by the Weiss field
function G . The impurity action [here nms � c1

mscms

and c�t� � �cms�t�� is a vector of Grassman variables] is
given by
Seff � 2
Z b

0
dt

Z b

0
dt0 Tr �c1�t�G21�t, t0�c�t0�� 1

1
2

X
m,m0,s

Z b

0
dt �Umm0nm

s nm0

2s 1 �Umm0 2 Jmm0�nm
s nm0

s � . (1)
It describes the spin, orbital, energy, and temperature de-
pendent interactions of a particular magnetic 3d atom with
the rest of the crystal and is used to compute the local
Green’s function matrix:

Gs�t 2 t0� � 2
1
Z

Z
D�c, c1�e2Seff c�t�c1�t0� , (2)

(Z is the partition function) and the impurity self-energy
G21

s �vn� 2 G21
s �vn� � Ss�vn�.

The Weiss field function is required to obey the self-
consistency condition [14,15], which restores translational
invariance to the impurity model description:

Gs�vn� �
X
k

��ivn 1 m�1 2 HLDA�k� 2 Sdc
s �vn��21,

(3)

m is the chemical potential defined self-consistently
through the total number of electrons, vn � �2n 1 1�pT
are the Matsubara frequencies for temperature T � b21

�n � 0, 61, . . .�, and s is the spin index. The local matrix
Sdc

s is the sum of two terms, the impurity self-energy
and a so-called “double counting” correction, Edc which
is meant to substract the average electron-electron inter-
actions already included in the LDA Hamiltonian. For
metallic systems we propose the general form of the
dc correction: Sdc

s �v� � Ss�v� 2
1
2 TrSs�0�. This is

motivated by the fact that the static part of the correlation
effects are already well described in the density functional
theory. Only the d part of the self-energy is presented
in our calculations, therefore Sdc

s � 0 for s and p states
as well as for nondiagonal d-s, p contributions. In order
to describe the finite-temperature ferromagnetism of
transition metals we use the non-spin-polarized LDA
Hamiltonian HLDA�k� and accumulate all temperature de-
pendent spin splittings in the self-energy matrix Sdc

s �vn�.
We use the impurity QMC scheme for the solution

of the multiband DMFT equation [26]. The Hirsch
discrete Hubbard-Stratonovich transformation introduces
�2M 2 1�M auxiliary Ising fields Sss0

mm0 where M is the
orbital degeneracy of the d states, and we calculate Gs�t�
by an exact integration of the fermion degrees of freedom
in the functional integral [Eq. (2)] [13]. In order to sample
efficiently all the spin configurations in the multiband
QMC scheme, it is important to use “global” spin flips:
�Sss 0

mm0 � ! �2S2s2s 0

mm0 � in addition to the local moves of
the auxiliary fields. The number of QMC sweeps was of
the order of 105. A parallel version of the DMFT program
was used to sample the 45 Ising fields for 3d orbitals. We
used 256 k-points in the irreducible part of the BZ for
the k integration. Ten to twenty DMFT iterations were
sufficient to achieve convergence far from the Curie point.
Because of the cubic symmetry of the bcc-Fe and fcc-Ni
lattices the local Green function is diagonal in the basis
of real spherical harmonics. The spectral functions for
real frequencies were obtained from the QMC data by
applying the maximum entropy method [27].

Our results for the local spectral function for iron and
nickel are shown in Figs. 1 and 2, respectively. The
LDA 1 DMFT approach describes well all the qualitative
features of the density of states (DOS), which is especially
nontrivial for nickel. Our QMC results reproduce well the
three main correlation effects on the one particle spectra
below TC [28]: the presence of a famous 6 eV satellite,
the 30% narrowing of the occupied part of the d band, and
the 50% decrease of exchange splittings compared to the
LDA results. Note that the satellite in Ni has substantially
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FIG. 1 (color). LDA 1 DMFT results for ferromagnetic iron
(T � 0.8TC). The partial densities of d states (full lines) are
compared with the corresponding LSDA results at zero tem-
perature (dashed lines) for the spin-up (red lines, arrow-up) and
spin-down (blue lines, arrow-down) states. The inset shows the
spin-spin autocorrelation function for T � 1.2TC .
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FIG. 2 (color). Same quantities as in Fig. 1 for ferromagnetic
nickel (T � 0.9TC). The inset shows the spin-spin autocorrela-
tion function for T � 1.8TC .

more spin-up contributions in agreement with photoemis-
sion spectra [28]. The exchange splitting of the d band
depends very weakly on temperature from T � 0.6TC to
T � 0.9TC . Correlation effects in Fe are less pronounced
than in Ni, due to its large spin splitting and the characteris-
tic bcc-structural dip in the density of states for spin-down
states near the Fermi level, which reduces the DOS for par-
ticle hole excitations.

The uniform spin susceptibility in the paramagnetic state
xq�0 � dM�dH was extracted from the QMC simulations
by measuring the induced magnetic moment in a small
external magnetic field. It includes the polarization of
the impurity Weiss field by the external field [13]. The
dynamical mean-field results account for the Curie-Weiss
law which is observed experimentally in Fe and Ni. As
the temperature increases above TC, the atomic character
of the system is partially restored resulting in an atomiclike
susceptibility with an effective moment:

xq�0 �
m

2
eff

3�T 2 TC�
. (4)

The temperature dependence of the ordered magnetic mo-
ment below the Curie temperature and the inverse of the
uniform susceptibility above the Curie point are plotted in
Fig. 3 together with the corresponding experimental data
for iron and nickel [1,29]. The LDA 1 DMFT calcula-
tions describe the magnetization curve and the slope of the
high-temperature Curie-Weiss susceptibility remarkably
well. The calculated values of high-temperature magnetic
moments extracted from the uniform spin susceptibility
are meff � 3.09�1.50�mB for Fe (Ni), in good agreement
with the experimental data meff � 3.13�1.62�mB for Fe
(Ni) [29].

We have estimated the values of the Curie temperatures
of Fe and Ni from the disappearance of spin polariza-
tion in the self-consistent solution of the DMFT problem
and from the Curie-Weiss law in Eq. (4). Our estimates
TC � 1900 �700�K are in reasonable agreement with ex-
perimental values of 1043 �631�K for Fe (Ni), respectively
067205-3
0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

0.0

0.5

1.0

Ni

Fe

χ-1
M

ef
f2 /3

T
c

 M
(T

)/
M

(0
)

T/Tc

FIG. 3 (color). Temperature dependence of the ordered mo-
ment and the inverse ferromagnetic susceptibility for Fe (open
squares) and Ni (open circles) compared with experimental
results for Fe (squares) and Ni (circles) (from Refs. [1,28]).

[29], considering the single site nature of the DMFT ap-
proach, which is not able to capture the reduction of TC

due to long wavelength spin waves. These effects are gov-
erned by the spin wave stiffness. Since the ratio of the spin
wave stiffness �D� to TC , TC�a2D is nearly a factor of 3
larger for Fe than for Ni [29] (a is the lattice spacing), we
expect the DMFT TC to be much higher than the observed
Curie temperature in Fe than in Ni. Quantitative calcula-
tions demonstrating the sizable reduction of TC due to spin
waves in Fe in the framework of a Heisenberg model were
performed in Ref. [9].

Within dynamical mean-field theory one can also com-
pute the local spin susceptibility defined by

xloc �
g2

s

3

Z b

0
dt �S�t�S�0�� , (5)

where gs � 2 is the gyromagnetic ratio, S �
1
2

P
m,s,s0 cy

mssss 0cms 0 is the single-site spin operator,
and s � �sx, sy ,sz� are Pauli matrices. It differs from
the q � 0 susceptibility, by the absence of spin polariza-
tion in the Weiss field of the impurity model. Equation (5)
cannot be probed directly in experiments but it is easily
computed in DMFT-QMC. Its behavior as a function of
temperature gives a very intuitive picture of the degree of
correlations in the system. In a weakly correlated system
we expect Eq. (5) to be nearly temperature independent,
while in a strongly correlated system we expect a leading
Curie-Weiss behavior at high temperatures xlocal � m

2
loc�

�3T 1 const� where mloc is an effective local magnetic
moment. In the Heisenberg model with spin S, m

2
loc �

S�S 1 1�g2
s , and for well-defined local magnetic mo-

ments (e.g., for rare earth magnets) this quantity should
be temperature independent. For the itinerant electron
magnets mloc is temperature dependent, due to a variety of
competing many-body effects such as Kondo screening,
the induction of local magnetic moment by temperature
[12], and thermal fluctuations which disorder the moments
[30]. All these effects are included in the DMFT cal-
culations. The t dependence of the correlation function
067205-3
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�S�t�S�0�� results in the temperature dependence of mloc

and is displayed in the insets of Figs. 1 and 2. Iron can
be considered as a magnet with very well-defined local
moments above TC (the t dependence of the correlation
function is relatively weak), whereas nickel is more
itinerant electron magnet (stronger t dependence of the
local spin-spin autocorrelation function).

The comparison of the values of the local and the q � 0
susceptibilities gives a crude measure of the degree of short
range order which is present above TC. As expected, the
moments extracted from the local susceptibility Eq. (5)
are a bit smaller (2.8mB for iron and 1.3mB for nickel)
than those extracted from the uniform magnetic suscep-
tibility. This reflects the small degree of the short range
correlations which remain well above TC [31]. The high-
temperature LDA 1 DMFT clearly shows the presence of
a local moment above TC. This moment is correlated with
the presence of high-energy features (of the order of the
Coulomb energies) in the photoemission. This is also true
below TC , where the spin dependence of the spectra is
more pronounced for the satellite region in nickel than
for that of the quasiparticle bands near the Fermi level
(Fig. 2). This can explain the apparent discrepancies be-
tween different experimental determinations of the high-
temperature magnetic splittings [11,32,33] as being the
result of probing different energy regions. The resonant
photoemission experiments [32] reflect the presence of
local-moment polarization in the high-energy spectrum
above Curie temperature in nickel, while the low-energy
angle-resolved photoemission spectroscopy investigations
[33] result in nonmagnetic bands near the Fermi level.
This is exactly the DMFT view on the electronic structure
of transition metals above TC. Fluctuating moments and
atomiclike configurations are large at short times, which
results in correlation effects in the high-energy spectra
such as spin-multiplet splittings. The moment is reduced
at longer time scales, corresponding to a more bandlike,
less correlated electronic structure near the Fermi level.

To conclude, we presented the first results of ab initio
LDA 1 DMFT calculations of finite-temperature mag-
netic properties for Fe and Ni and showed that many-body
effects which incorporate the local atomic character of the
electrons and which are ignored in the standard LDA based
scheme are essential for a simultaneous description of the
magnetic properties and the one electron spectra of itin-
erant electron magnets. DMFT gives a satisfactory semi-
quantitative description of the physical properties of Fe
and Ni, far from the Curie point, indicating that the critical
fluctuations, which are not included in the DMFT approxi-
mation, do not play a crucial role, except for the immediate
vicinity of the transition, and many aspects of the physics
of this system can be understood within an approach which
stresses local physics. It would be interesting to extend this
study to other itinerant magnetic systems with more atoms
per unit cell, such as SrRuO3 which is also well described
by band theory at very low temperatures but has anoma-
lous properties above its Curie point [34].
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