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Long-Range Order at Low Temperatures in Dipolar Spin Ice
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It has recently been suggested that long-range magnetic dipolar interactions are responsible for spin
ice behavior in the Ising pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7. We report here numerical results
on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which
greatly improves the dynamics at low temperature. We recover the previously reported missing entropy
in this model, and find a first order transition to a long-range ordered phase with zero total magnetization
at very low temperature. We discuss the relevance of these results to Dy2Ti2O7 and Ho2Ti2O7.
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Competing or frustrated interactions are a very common
feature of condensed matter systems. In some cases, the
frustration can be so intense that it induces novel and com-
plex phenomena, often causing extensive degeneracy in the
ground state of the system and preventing any ordering
down to absolute zero temperature, a situation referred to
as “zero-point entropy.” Because of the availability of a
large variety of magnetic materials that can be described
by rather simple theoretical models, magnetic systems of-
fer themselves as the ideal benchmark for generic con-
cepts pertaining to collective phenomena in nature. In this
context, the term spin ice was recently coined by Harris
and co-workers [1] to describe the analogy that exists be-
tween the statistical physics of certain geometrically frus-
trated Ising pyrochlore magnets, and proton ordering in
the hexagonal phase of ice (Ih) [2–4]. For the Ising py-
rochlore systems Ho2Ti2O7 and Dy2Ti2O7, the Ho31 and
Dy31 rare earth magnetic moments reside on a network of
corner sharing tetrahedra (Fig. 1). Each moment is forced
by single-ion anisotropy to lie along the axis joining the
centers of the two tetrahedra that it belongs to [1,5]. For a
simple theoretical model considering only nearest neighbor
ferromagnetic (FM) exchange, the ground state is macro-
scopically degenerate, but is required to have two moments
pointing in and two pointing out of every tetrahedron, a
constraint that maps exactly the two short and long proton
bonds and the ice rules for their arrangement in Ih [6,7].
This nearest neighbor FM model shows no ordering and
is characterized by a broad Schottky-like peak in the mag-
netic specific heat [7].

Both Ho2Ti2O7 [1,8] and Dy2Ti2O7 [5,9] show qualita-
tive properties roughly consistent with the basic spin ice
picture of the simple nearest neighbor FM model [6,7].
However, it has been shown recently that, rather than
nearest neighbor FM exchange, it is surprisingly the large
dipolar interaction present in these materials that is re-
sponsible for their spin ice behavior [8–12]. For a model
which we call dipolar spin ice, with the long-range nature
of the dipolar interaction properly handled using Ewald
summation techniques, numerical results show a lack of
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magnetic ordering down to very low temperatures [8,9].
Furthermore, the dipolar spin ice model agrees quantita-
tively very well with specific heat data for Dy2Ti2O7 [5]
and Ho2Ti2O7 [8], as well as neutron scattering measure-
ments on the latter material [8]. In other words, while the
nearest neighbor FM model provides a simple and quali-
tative understanding of the spin ice phenomenon, there is
now strong evidence that the dipolar spin ice model with
its long-range dipolar interactions provides a quantita-
tively accurate description of experimental results on real
materials [8,9]. As in the case of Ih, for dipolar spin ice, it

FIG. 1. The lower left “downward” tetrahedron of the pyro-
chlore lattice shows Ising spins (arrows). Each spin axis is along
the local �111� quantization axis, which goes from one site to the
middle of the opposing triangular face (as shown by the disks)
and meets with the three other �111� axes in the middle of the
tetrahedron. For clarity, black and white circles on the lattice
points denote other spins. White represents a spin pointing into
a downward tetrahedron while black is the opposite. The entire
lattice is shown in an ice-rules state (two black and two white
sites for every tetrahedron). The hexagon (thick grey line) shows
a minimal loop move, which corresponds to reversing all colors
(spins) on the loop to produce a new ice-rules state.
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is unclear whether the interactions which cause the quasi-
degeneracy (here the long-range magnetic dipolar inter-
action [9]), should at the same time prevent any ordering
down to zero temperature and cause zero-point entropy.
The dipolar interaction is itself FM at nearest neighbor, and
is thus prone to spin ice correlations. However, a priori
one might expect that its longer range component should
lift the nearest neighbor degeneracy and induce the selec-
tion of an ordered state within the ice-rules manifold. We
show in this Letter that this is precisely the case. Specifi-
cally, the dipolar spin ice model with long-range interac-
tions does possess a unique ground state (apart from trivial
global symmetry operations) which develops at very low
temperature. However, for local dynamical processes
(such as single spin fluctuations), the development of
this ground state is completely dynamically inhibited be-
cause of high energy barriers separating quasidegenerate
ice-rules states. We explore here the low temperature
ordering properties of dipolar spin ice by taking advantage
of “loop moves” incorporated into a standard Metropolis
Monte Carlo algorithm, a method considered previously
for two-dimensional square ice models [13]. Such moves
allow one to explore degeneracy lifting effects within
the ice-rules manifold in an efficient manner, something
which is not possible via single spin flip dynamics. We
present here strong numerical evidence for a phase tran-
sition at low temperature in the dipolar spin ice model in
zero field that recovers the entire low temperature residual
magnetic entropy of the system.

For the pyrochlore lattice with Ising spins defined by
local axes, the Hamiltonian with nearest neighbor ex-
change and long-range dipolar interactions is [8–10]

H � 2J
X
�ij�

Szi
i ? S

zj

j

1 Dr3
nn

X
i.j

Szi
i ? S

zj

j

jrijj3
2

3�Szi
i ? rij� �S

zj

j ? rij�
jrij j5

,

(1)

where the spin vector Szi
i labels the Ising moment of mag-

nitude jSj � 1 at lattice site i and local Ising �111� axis zi

discussed earlier. Here, J represents the exchange energy
and D � �m0�4p�g2m2�r3

nn. However, because of the
local Ising axes, the effective nearest neighbor energy
scales are Jnn � J�3 and Dnn � 5D�3.

As described in Ref. [9], the long-range nature of the
dipolar interactions can be handled by the Ewald method.
In that Letter, extensive numerical analysis via single spin
flip Monte Carlo simulations found no evidence of a tran-
sition to long-range order. Rather, short-range order domi-
nated by ice-rules correlations was observed down to low
temperatures, similar to that found in the nearest neighbor
FM model [12].

Qualitatively, the dynamics of both models appear to be
very similar. As the temperature is lowered, significant
thermal barriers are created by the energy cost involved in
fluctuating out of the ice-rules manifold. With single spin
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flips, fluctuations between states within the ice-rules mani-
fold are also reduced, as it is impossible to do so without
first breaking the two-in/two-out ice rules. Such thermal
barriers produce nontrivial and extremely slow dynam-
ics. If a unique ground state exists within the plethora of
ice-rules states [��3�2�N�2] of the dipolar spin ice model
[Eq. (1)], these thermal barriers make the probability of
reaching it in a numerical simulation using conventional
spin flips exceedingly small. Consequently, the question
concerning the nature of the ground state becomes diffi-
cult to answer using standard numerical techniques, and a
different procedure must be applied [13]. Since we found
in Ref. [9] that long-range dipolar interactions do give rise
to spin ice behavior, we take as a starting point for identi-
fying the low energy states and excitations of Eq. (1) the
exactly degenerate ice-rules states of the nearest neighbor
FM model. In Fig. 1 we denote each site of the pyrochlore
lattice by a white or a black circle which represents a spin
pointing into or out of a “downward” facing tetrahedron,
respectively. In this particular example, the spin configu-
ration shown forms an ice-rules state that can be trans-
formed into another ice-rules state by reversing all the
colors (spins) on the loop denoted by the grey hexagon.
In general, six spins form the shortest loop, while larger
loops are also possible. A loop can be constructed by sim-
ply choosing a starting lattice site and tracing out a closed
path that involves tetrahedra which have exactly two spins
on the path. Each pair of spins which are neighbors on
the path are such that one is pointing into and the other
pointing out of their shared tetrahedron, with such a loop
constructed from alternating black and white circles.

For our numerical study of the dipolar spin ice model,
this type of loop move was utilized in conjunction with
conventional single spin flip dynamics. Specifically, such
loops are identified by allowing a wandering path to form a
loop whenever it encounters any previously visited site and
ignoring any “dangling” spins in the path. This allows for a
large number of short loops to be created, with an average
length that tends to a finite value as the system size is
increased. As explained above for the dipolar system, such
“loop reversal” moves are not true zero modes, but involve
a small gain or lowering of the energy (small compared
to Jnn 1 Dnn) which is handled by a standard Metropolis
algorithm [14].

Our numerical simulations for the dipolar spin ice model
were carried out on system sizes up to 2000 spins (of cubic
unit cell length L � 5) with O�105� spin flips per spin
and O�105� loop moves. For all interaction parameters Jnn

and Dnn which show spin ice behavior using single spin
flip dynamics only (Jnn�Dnn * 20.91) [9], we find that
the acceptance ratio of the loop moves increases at low
temperature as the system enters the spin ice regime, before
dropping to zero just below the temperature at which the
system undergoes a transition to a long-range ordered state
obeying the ice rules.

In Fig. 2 we present specific heat data obtained for a
system with interaction parameters Jnn and Dnn identified
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FIG. 2. Specific heat data from simulations using single spin
flips (squares) and combined single spin flips and loop moves
(filled circles) for a system size L � 4. Interaction parameters
are Dy2Ti2O7 values Jnn � 21.24 K and Dnn � 2.35 K (as in
Ref. [9]). Inset: Finite size scaling of the specific heat peak
height as a function of system size L � 2, 3, 4, 5. The scaling
behavior Cpeak�L� � a 1 bL3 is consistent with that expected
for a first order phase transition.

in Ref. [9] for the spin ice material Dy2Ti2O7. Using a
single spin flip Monte Carlo algorithm, spin ice correla-
tions develop over a large temperature regime (signified
by the broad peak around 1.1 K), before the system dy-
namically freezes into a disordered ice-rules state at low
temperature. Using the loop algorithm in combination with
single spin flips, the higher temperature data is reproduced
before a very sharp transition at Tc � 0.18 K. The en-
ergy probability distribution displays a double-peak fea-
ture in a narrow temperature region close to Tc, a strong
indicator that the transition is first order. To assess more
quantitatively the nature of the phase transition, a finite
size scaling study was done (see inset of Fig. 2). Because
of the extremely sharp nature of the specific heat at Tc,
the method of slowly cooling in a Monte Carlo simulation
with discrete temperature steps could not give sufficiently
accurate data to resolve Cpeak within reasonable computer
time. To avoid this problem, simulations were performed
in a multicanonical ensemble [15] at a single temperature
near Tc. This data was then reweighted using Ferrenberg
and Swendsen’s technique [16]. This allows us to obtain
the appropriate thermodynamic quantities to any degree
of temperature resolution required. The latent heat DE
determined from the slope of Cpeak�L� vs L [Cpeak�L� ~

16DEL3��4T2
c �] is DE � 0.246 6 0.002 J mol21, in ex-

cellent agreement with the discontinuity of the internal en-
ergy at Tc, 0.245 6 0.003 J mol21. As well, on integration
of C�T and taking into account the entropy associated with
the latent heat at Tc, we recover a magnetic entropy within
4% of the total possible value of kB ln2 per spin.

The ordered phase we observe is similar to that found
in the order by disorder transition in the antiferromagnetic
fcc Ising model where an ordering of antiferromagnetically
stacked FM planes occurs [17]. Here, the ordering vector
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q lies parallel to one of the cubic axes directions, specifi-
cally q � �0, 0, 2p�a� or its starred directions. To con-
struct the ordered state, first consider a starting tetrahedron
with its six possible ice-rules states. For a given ordering
vector q, this tetrahedron selects one of the four possible
spin configurations (two independent configurations and
their spin reversals, Si ! 2Si), with a total magnetic mo-
ment for the tetrahedron perpendicular to q. The entire
ordered state may then be described by planes (perpen-
dicular to q) of such tetrahedra. The wavelength defined by
q physically corresponds to antiferromagnetically stacked
planes of tetrahedra, where a given plane has tetrahedra of
opposite configuration to the plane above and below it. In
Fig. 3 we show one such ground state with ordering vector
q � �0, 0, 2p�a�.

The transition to such a ground state structure can be
characterized by the multicomponent order parameter,

Cm
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Such a labeling is natural given that the pyrochlore lattice
can be viewed as an fcc lattice with a downward tetrahedral
basis (see Fig. 1). Thus, j labels the fcc lattice points of the
pyrochlore lattice, and the index a sums over the four spins
comprising the basis attached to each j. The index a labels
the three possible symmetry related q ordering vectors.
For a given qa , as described above, there are two ice-rules
configurations and their reversals which can each form a
ground state. Thus m � 1, 2 labels these possibilities with
the phase factors 	fm

a 
 describing the given configuration
m. Each Ising variable sj

a has value 1 (21) when a spin
points into (out of) its downward tetrahedron labeled by j.
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FIG. 3. Temperature dependence of the order parameter �C�
defined above for system sizes L � 3 (triangles) and L � 4
(squares). Inset: The q � �0, 0, 2p�a� ground state projected
down the z axis. The four tetrahedra making up the cubic unit
cell appear as dark grey squares. The light grey square does not
represent a tetrahedron; however, its diagonally opposing spins
occur in the same plane. The component of each spin parallel
to the z axis is indicated by a 1 and a 2 sign.
067203-3



VOLUME 87, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 6 AUGUST 2001
1. Upon cooling through the transition, the system selects
a unique ordered configuration, causing the corresponding
component of Cm

a to rise to unity and all others to fall to
zero. The component selected by the ordering is equally
likely to be any one of the six. Figure 3 is a plot of �C�

for two system sizes, where �C� �
qP2

m�1

P3
a�1�Cm

a �2

is the magnitude of the multicomponent order parameter.
For T , Tc the two lattice sizes produce identical order
parameters. By contrast, �C� for the smaller lattice shows
a somewhat more pronounced rounding near Tc, and an
increased residual value for large T . These results show a
clear discontinuity of the order parameter at Tc, and, hence,
a first order transition to the long-range ordered phase we
have identified.

For all values of Jnn�Dnn within the dipolar spin ice
regime [9], we find a low temperature phase transition to
the state discussed above. We find that the transition is
independent of the strength of the nearest neighbor ex-
change J (Tc�Dnn � 0.08), consistent with the idea that
the transition is solely driven by the long-range dipolar
interactions. The observation of a finite ordering tempera-
ture using the algorithm presented here demonstrates that
long-range dipolar interactions between Ising spins on the
pyrochlore lattice have no special exact symmetry that al-
low for a macroscopically degenerate ground state. This
conclusion is also found within a mean field analysis [10],
which shows that, as the truncation of long-range dipolar
interactions is pushed out to further distances (up to 104

nearest neighbors), the maximal eigenvalues of the normal
mode spectrum become only quasidegenerate throughout
the Brillouin zone, as opposed to the completely flat spec-
trum (and macroscopic degeneracy) we find for the nearest
neighbor spin ice model [10]. Furthermore, the quasi-
degenerate eigenvalues of the mean field theory have a very
weak dispersion and predict the same ordering wave vec-
tor q found here.

The question remains as to what extent our conclu-
sions apply to the real spin ice materials Ho2Ti2O7 [1] and
Dy2Ti2O7 [5]. The dipolar spin ice model may be an ac-
curate description of these materials even at extremely low
temperatures, while it is also possible that perturbations,
H0, exist beyond Eq. (1) which could induce another type
of ground state selection. Similar to Ih, however, irrespec-
tive of the origin of any ordering, its actual observation
may depend critically on the dynamical behavior of the
materials. The inability of single spin fluctuations to con-
nect different ice-rules states in phase space shows that
at low temperatures relaxation via local dynamics is ex-
tremely slow. For both Ho2Ti2O7 and Dy2Ti2O7, the tran-
sition temperature for the ordered phase observed in our
simulations is well below the temperature at which single
spin fluctuations over extended length scales (and out of
the ice-rules manifold) are thermally frozen out. Thus,
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while theoretically an ordered phase induced by long-range
dipolar interactions between Ising spins on the pyrochlore
lattice does exist, its experimental observation will depend
acutely on the dynamical processes of the real materials.
Furthermore, one requires that perturbations H 0 are negli-
gible, i.e., that H 0�Dnn & Tc�Dnn & 0.08.

In conclusion, we predict that, for the dipolar spin ice
model, which is in quantitative agreement with experimen-
tal data on real systems in the temperature regime investi-
gated so far [8,9], there exists a unique long-range ordered
ground state with zero total magnetization per cubic unit
cell. If dynamical equilibrium is achieved, this state is
arrived at via a first order transition with recovery of all
residual “zero-point” entropy.
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