
VOLUME 87, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 6 AUGUST 2001
Full Current Statistics in Diffusive Normal-Superconductor Structures

W. Belzig* and Yu. V. Nazarov
Department of Applied Physics and Delft Institute of Microelectronics and Submicrontechnology, Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 2 February 2001; published 23 July 2001)

We study the current statistics in normal diffusive conductors in contact with a superconductor. Using
an extension of the Keldysh Green’s function method we are able to find the full distribution of charge
transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium
current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement
of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless
energy ETh � D�L2. Our calculation fully accounts for the proximity effect in the normal metal and
agrees with experimental data.

DOI: 10.1103/PhysRevLett.87.067006 PACS numbers: 74.50. +r, 05.40. –a, 72.70. +m, 73.23.–b
The electric current in conductors in general fluctuates.
The full statistics of these fluctuations can be accessed in
some cases [1]. However, the full statistics are not easily
accessible experimentally. The current experiments mainly
concentrate on noise power measurements. This has be-
come an important tool to extract information about the
relevant charge transport mechanism [2]. One can, for ex-
ample, extract the effective charge of carriers responsible
for the transport. Heterostructures with normal metals
(N) and superconductors (S) were intensively investigated.
Generally, the interest in these stems from the interplay be-
tween transport of doubly charged Cooper pairs and singly
charged normal quasiparticles. The ratio between noise
power in the superconducting state and in the normal state
can roughly be interpreted as effective charge. Experi-
mental indications of a doubled shot noise due to Andreev
reflection in diffusive wires with one superconducting lead
were reported in Refs. [3,4]. Other contributions report
an enhancement of the current noise in SNS structures
[5] with effective charges much larger than unity, possi-
bly originating from multiple Andreev reflections.

On the theoretical side, first calculations of the noise
[6,7] and the full statistics [8] for short contacts predicted
an enhanced shot noise with respect to the normal state
value. For certain cases, such as tunnel junctions or disor-
dered contacts, a doubled effective charge was predicted.
The drawback of these calculations is the limitation to short
contacts or small energies, since fully coherent propagation
of electrons and holes is assumed and the energy depen-
dence of the scattering amplitudes has been disregarded.
For the opposite regime, where coherence of electrons and
holes in the normal region plays no role, a modification of
the Boltzmann-Langevin approach was recently put for-
ward [9]. Interestingly, it also gives a doubling of the shot
noise in the incoherent regime. One finds similar limita-
tions in the available calculations of the noise of SNS struc-
tures [10]. It is tempting to “interpolate” between these two
limits of coherent and incoherent propagation and to con-
clude that nothing interesting happens in the intermediate
regime. We will show below that this is not the case. As
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an analogy let us note the similarity to the linear conduc-
tance of a diffusive normal wire with one superconducting
lead. By using the previously mentioned approaches, one
finds that the conductance has exactly the same value as in
the normal state independent of temperature. Only a full
calculation using the Keldysh Green’s function technique
revealed that the conductance is significantly enhanced at
energies of the order of the Thouless energy ETh [11], dis-
playing a reentrant behavior. This behavior of the con-
ductance has been experimentally verified. At present no
calculation of current noise is available, which fully ac-
counts for the peculiarities of the proximity effect.

Another recent development is to study theoretically
the full statistical properties of current fluctuations. The
method of choice to do so is the so-called full counting
statistics, pioneered in Ref. [1]. Introducing a counting
field x that couples to the current operator, one can ac-
cess the full current distribution. Derivatives of the current
with respect to x immediately generate all moments of the
distribution. Thus, one circumvents the cumbersome cal-
culation of all the moments.

In this Letter we introduce a theoretical method that al-
lows us to obtain the full current statistics for a wide class
of SN structures. We further present concrete results for
the equilibrium current distribution and the nonequilibrium
current noise with a full account of the proximity effect.
For simplicity, we restrict ourselves here to a diffusive wire
mounted between a normal reservoir and a superconduct-
ing reservoir. First, we determine the equilibrium current
distribution. It turns out that the large current fluctuations
are more probable in the superconducting case. Second,
we calculate the temperature and voltage-dependent cur-
rent noise. We find that the noise is enhanced (similar to
the conductance) at voltages of the order of and for tem-
peratures below the Thouless energy. In the respective lim-
its our results agree with previous calculations [7,9].

Let us first present the theoretical framework. We used
a recently developed extension [12,13] of the Keldysh
technique to compute the statistics of our proximity struc-
ture. There it was shown that the current statistics can be
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obtained by imposing the modified boundary condition on
one reservoir’s (L) Green’s function

ǦL�x� � e�i�2�xťK ǦLe2�i�2�xťK . (1)

Here ǦL is the standard Green’s function of a reservoir
and ťK � ŝ1t̄3 is a matrix in Keldysh(̂ )-Nambu(̄ ) space.
Statistical properties are encoded in the dependence on the
counting field x. The current probability distribution is
found from

P�I� �
Z p

2p
dx e2S�x�2ixIt�e. (2)

Here t denotes the time of observation. The action S�x�
can be found from the integration of the x-dependent
current

2i
e

t

≠S�x�
≠x

� I�x� �
1
8e

Z
dE Tr�ťK Ǐ�x�� . (3)

The spectral matrix current in a diffusive wire is given by

Ǐ�x� � 2sǦ�x�
≠

≠x
Ǧ�x� , (4)

where s is the conductivity. This matrix current has to
be found by defining an appropriate circuit. The manual
on how to do this can be found in [14]. Note that the only
change in comparison to the calculation of the conductance
is the modified boundary condition (1). All other relations
defining the actual circuit remain unchanged, as long as
they are respecting the full matrix structure.

We stress that our approach is not in contradiction with
the general scattering matrix approach of Ref. [8]. If one
knew the electron-hole scattering amplitudes for the sys-
tem under consideration, and would not disregard their en-
ergy dependence, one could obtain the same result. The
characterization of these amplitudes would have to be per-
formed along the lines of Ref. [15]. We also emphasize
that the calculation of the full current statistics can be done
in a finer, simpler, and more compact way than a separate
calculation of its second order perturbation series, i.e., the
noise.

Let us now specify our system. A diffusive metal is con-
nected to a normal terminal at one end and to a supercon-
ducting terminal at the other end. Inside the mesoscopic
wire the quasiclassical transport equations are obeyed [16].
In the normal metal they read

D
≠

≠x

µ
Ǧ�x, x�

≠

≠x
Ǧ�x, x�

∂
� �2iEt̄3, Ǧ�x, x�� . (5)

Here D is the diffusion constant and x is the coordinate
along the wire, which has a length L. Its conductance is
GN � sA�L (cross section A). At both ends the bound-
ary conditions to reservoirs have to be supplied. At the
normal end with ideal connection, the Green’s function
is continuous: Ǧ�0, x� � ǦL�x�. The other end is con-
nected to a superconducting reservoir by a contact of neg-
ligible resistance, which leads to the boundary condition
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Ǧ�L, x� � ǦR. A circuit representation of the system is
depicted in the inset of Fig. 1.

In a normal reservoir (which we will consider in the rest
of the paper) ǦL is given by

ǦL �

√
t̄3 K̄
0 2t̄3

!
,

K̄ � 2

√
1 2 2f�E� 0

0 1 2 2f�2E�

!
.

(6)

The distribution function at voltage V and temperature T
is given by f�E� � �exp��E 1 eV ��T� 1 1�21. A super-
conducting reservoir at zero voltage is described by

ǦR �

√
R̄ �R̄ 2 Ā� tanh�E�2T �
0 Ā

!
. (7)

Advanced and retarded Green’s functions in (7) possess
the structure R̄�Ā� � gR,At̄3 1 fR,At̄1, fR,A � iD���E 6

id�2 2 D2�1�2, and gR,A following from the normalization
condition f2 1 g2 � 1 in a standard BCS superconductor.

Let us briefly comment on the numerical procedure of
the solution. It is most convenient to solve the matrix equa-
tion (5) directly. For this purpose the diffusive wire is
represented by a discrete set of n nodes, each represented
by a Green’s function Ǧk connected in a series by tunnel
junctions of conductance g � �n 1 1�GN [14]. The ma-
trix current between two neighboring nodes is then given
by Ǐk,k11 �

g
2 �Ǧk, Ǧk11�. The right-hand side of (5) has

FIG. 1. Equilibrium current distribution. The case, when the
superconducting terminal is normal (solid line), does not depend
on the Thouless energy. In the superconducting state the distri-
bution depends on ETh. At low temperatures (dashed curve)
large fluctuations are enhanced in comparison to the normal
state. This trend continues at temperatures above ETh (dotted
curve). The deviations occur in the regime of non-Gaussian
fluctuations. Note that the equilibrium noise is the same in all
cases. The inset depicts our model system.
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a similar form and is represented as a “decoherence” ter-
minal [with a Green’s function Ǧdec � 2i2�E�nETh�t̄3]
connected to each node. The matrix current conserva-
tion for node k follows from discretizing Eq. (5) and reads
�g�Ǧk11 1 Ǧk21� 1 Ǧdec, Ǧk� � 0. The resulting set of
equations for the nodes’ Green’s functions is then solved
by iteration.

As a first application, we study the distribution of cur-
rent fluctuations in equilibrium. We therefore put V � 0
and find the solution of the above equations for different
values of x. We evaluate the integral over x in (2) in
the saddle point approximation, we take x as complex and
expand the exponent in (2) around the maximum. The in-
tegral then yields P�I� � exp�S�x� 2 xIt�e�, which we
plot implicitly as a function of I�x�. To extract generic
fluctuation properties of the proximity effect we set here
D ¿ T , ETh.

Results of this calculation are displayed in Fig. 1. The
current I is normalized by GNT�e, and lnP�I� is plotted in
units of GNTt�e2. The solid line shows the distribution in
the normal state, which does not depend on the Thouless
energy. In our units, this curve is consequently inde-
pendent of temperature. In the superconducting state the
Thouless energy does matter, and the distributions depend
on the ratio ETh�T . We observe that large fluctuations of
the current in the superconducting case are enhanced in
comparison to the normal case, and in both cases are en-
hanced in comparison to Gaussian noise. For comparison
we plotted the Gaussian distribution �exp�2tI2�4GNT �
of the current measurements, owing to the fact that the
conductance is the same in all cases. The differences be-
tween the normal and the superconducting state occur in
the regime of non-Gaussian fluctuations.

Let us now turn to the nonequilibrium current noise
as the second application. Previous results can be sum-
marized in two statements. At temperatures larger than
an applied voltage the wire displays the usual thermal
noise SI�T ¿ eV � � 4GN T in accordance with the fluc-
tuation-dissipation theorem. Note that in a calculation,
which neglects the proximity effect, the conductance of the
normal wire is equal to the normal state conductance GN

independent of voltage or temperature. For large voltages
eV ¿ T , on the other hand, the shot noise SI�T ø V� �
�4�3�eGNV is doubled in comparison to the normal state
value �2�3�eGNV . As discussed previously these results
do not depend on coherence between electrons and holes.
Consequently the Thouless energy plays no role. However,
this cannot be true, since the conductance is enhanced by
approximately 10% at energies of the order of ETh. In the
following we will show that the proximity effect indeed
changes the nonequilibrium noise of the system.

Because of its importance in the following discussion,
we have depicted the differential resistance of the prox-
imity wire in the inset of Fig. 2. It displays the famous
reentrance behavior [11]; i.e., starting from the normal
state resistance at zero voltage a minimum at energies of
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FIG. 2. Differential noise and conductance. Temperature and
voltages are in units of ETh. The main plot shows our results
for the differential noise together with experimental data from
Kozhevnikov et al. [4] and the result of the Boltzmann-Langevin
approach (grey lines). The inset shows the differential resis-
tance. Line styles and horizontal axis correspond to the main
plot, the small circles showing the corresponding experimen-
tal data of Kozhevnikov et al. [4]. At zero temperature, both
differential noise and resistance show a reentrant behavior, fea-
turing a distinct bump at voltages of the order of �5ETh. A
finite temperature tends to smear this signature of the proxim-
ity effect, but an enhancement above the Boltzmann-Langevin
result is still clearly visible. Comparison with the experimental
data [17] shows a good qualitative agreement for T � 0.25ETh,
which corresponds to the experimental value. Note that our re-
sults have no adjustable parameter.

the order of several ETh occurs. Above the minimum it
decays slowly to the normal state value as ��ETh�E�1�2.
Therefore, the Thouless energy is the central quantity in
the physics of the proximity effect. The disagreement of
the theory and the experimental data from Kozhevnikov
et al. [4] may possibly result from heating effects, not
accounted for in the theoretical calculation.

Using the method developed in [12,13], we are able to
take the coherence between electrons and holes fully into
account. We have to solve the Usadel equation (5), taking
into account the boundary condition (1). Then, the current
noise power is given by

SI � 2ei
≠I�x�
≠x

Ç
x�0

. (8)

There are two ways to attack this problem. One way to
determine the noise is to expand the Green’s functions and
Eq. (5) to first order in x and thus to obtain an equation for
the noise. The other way is to solve the full matrix equa-
tions and perform the differentiation in (8) numerically.
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Below we will use the second way to find the nonequilib-
rium noise. Nevertheless, let us sketch the derivation of
an equation for the noise. We define Ǧ�x, x� � Ǧ0�x� 2
i�x�2�Ǧ1�x� and Ǐ�x, x� � Ǐ0�x� 2 i�x�2�Ǐ1�x�. As re-
sult, we find

Ǐ1�x� � 2s

µ
Ǧ0�x�

≠

≠x
Ǧ1�x� 1 Ǧ1�x�

≠

≠x
Ǧ0�x�

∂
,

D
s

≠

≠x
Ǐ1�x� � �2iEt̄3, Ǧ1�x�� .

(9)

From this equation the generalization of the Boltzmann-
Langevin equation to superconductors can, in principle, be
derived. The boundary conditions at the reservoirs read
Ǧ1�0� � �ťK , ǦL� at the left end and Ǧ1�L� � 0 at the
right end. Finally the noise is SI � 2e

R
dE TrťK Ǐ1�x�.

By taking the trace of Eq. (9) multiplied with ťK , it follows
that it does not matter where the noise is evaluated, which
is as it should be.

We now turn to concrete results for the noise power.
The influence of the proximity effect is most easily seen in
the differential noise dS�dV . Numerical results for differ-
ent temperatures are displayed in Fig. 2. The inset shows
the differential conductance for the same parameters. The
differential noise shows a remarkable enhancement at en-
ergies of the order of the Thouless energy. Following a
linear increase at low voltage the differential noise over-
shoots the doubled normal differential noise, which is re-
covered at large voltages. The maximal differential noise
occurs, if the voltage is of the order of �4ETh. The largest
enhancement is found for T ø ETh and is roughly 10%.
At higher temperature the differential noise approaches the
Boltzmann-Langevin result [9], shown as grey lines. At
zero temperature the reentrant behavior makes the connec-
tion to the result obtained within random matrix theory [7].
The nontrivial behavior in the regime between these two
approaches shows the importance of phase coherence.

We can compare our results with experimental data on
the noise power obtained by Kozhevnikov et al. [4,17].
The experimental parameters correspond to T�ETh � 0.2.
Given that our approach contains no adjustable parameters,
the agreement is very good. A possible explanation for the
difference between theory and experiment is that heating
effects in the experiments may be important. These have
been completely disregarded in the theoretical calculation.
This would also explain the smaller reentrance of the dif-
ferential resistance seen in the experiment. Note, however,
that the energy scale, at which the influence of the prox-
imity effect is seen, is unchanged.

In conclusion, we have developed a method to calculate
statistical properties (with emphasis on the current noise
power) of normal-metal–superconductor heterostructures.
The method is embedded in a matrix circuit theory [14],
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which allows one to find the full current statistics of a wide
class of systems. We applied the method to a normal diffu-
sive wire with one normal and one superconducting reser-
voir. In equilibrium it turns out that the current fluctuation
distribution differs from that of a purely normal system in
the non-Gaussian regime. Large fluctuations of the current
are enhanced by the proximity effect. For temperatures
below ETh we found that the nonequilibrium current noise
shows a reentrant behavior with a maximum for voltages
of the order of ETh. This is in qualitative agreement with
experiment [4].
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