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We present three classes of exactly solvable models for fermion and boson systems, based on the
pairing interaction. These models are solvable in any dimension. As an example we show the first
results for fermions interacting with repulsive pairing forces in a two-dimensional square lattice. In spite
of the repulsive pairing force the exact results show attractive pair correlations.
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Exactly solvable models have played an important role
in understanding the physics of the quantum many body
problem, especially in cases where the system is strongly
correlated. Such situations arise, e.g., in one-dimensional
(1D) systems of interest for condensed matter physics and
also in strongly correlated finite fermion systems as atomic
nuclei. In both branches of physics the study of exactly
solvable models has been pursued with enormous success.

In 1D quantum physics, the exactly solvable models can
be classified into three families. The first family began
with Bethe’s exact solution of the Heisenberg model. Since
then a wide variety of 1D models has been solved using the
Bethe ansatz (for a recent review see [1]). A second fam-
ily of models is the so-called Tomonaga-Luttinger models
[1] which are solved by bosonization techniques and which
revealed non-Fermi liquid properties in 1D. These sys-
tems are now called Luttinger liquids. The third family,
proposed by Calogero and Sutherland, is models with
long-range interactions. They have been applied to sev-
eral problems [1] such as spin systems, the quantum Hall
effect, random matrix theory, etc.

The impact of the exactly solvable models in condensed
matter physics and in nuclear physics is so enormous that
one can hardly believe that the exact solution of the pairing
model (PM), of great interest to both fields, passed almost
unnoticed until very recently [2]. The PM was solved
exactly by Richardson in a series of papers in the 1960s
[3–5].

Independent of Richardson’s exact solution, it was re-
cently demonstrated [6] that the PM is an integrable model.
The pairing model may turn out particularly interesting,
since recent work [7] has shown that the pure repulsive
pairing Hamiltonian in a 2D lattice can be solved exactly
in the thermodynamic limit revealing strong superconduct-
ing fluctuations. The importance of this finding stems, of
course, from the fact that high-Tc superconductors appar-
ently acquire their superconducting properties through the
repulsive Coulomb interaction.

We will derive in this Letter three families of exactly
solvable models based on the pairing interaction for
fermion systems as well as for boson systems. The most
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important feature of the new set of models we will present
is that they are exactly solvable in any dimension. In
[8] we have advanced a numerical solution for a three-
dimensional confined boson system; here we will give
preliminary results for a fermion system in a 2D lattice.

Since the proof of integrability and the derivation of the
exact solutions are completely analogous for fermions and
bosons, we will develop both systems in parallel. In what
follows, whenever there are different signs, the upper one
will correspond to bosons while the lower one to fermions,
and we will refer indistinctly to bosons and fermions as
particles.

Let us begin our derivation by defining the three
operators
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X
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y
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y
l �

X
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y
lma
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lm � �Al�y , (1)

which close the commutator algebra
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y
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y
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y
l 0� � 2dll 0�Vl 6 2n̂l� .

(2)

In Eq. (1) the pair operator A
y
l creates a pair of particles

in time reversal states with ay �a� the particle creation
(annihilation) operator and Vl being the degeneracy of
level l.

The number operator n̂l and the pair operators Al, A
y
l

in each level l close the commutator algebra of the groups
SU�2� for fermions or SU�1, 1� for boson systems.

The three generators of these algebras can be written in
terms of the previously defined pair and number operators
as K0

l � 1
2 n̂l 6

1
4 Vl , and K1

l � 1
2 A

y
l � �K2

l �y.
These generators obey the more familiar commutation

relations of the SU�1, 1� and SU�2� group algebras

�K0
l , K1

l0 � � dll 0K
1
l , �K1

l , K2
l 0 � � 72dll 0K

0
l . (3)

The difference between the algebra of SU�1, 1� and SU�2�
appears in the sign of the second commutator.

The Hilbert space of N particles moving in L single
particle levels can be classified according to the product of
groups SU�2�1 3 SU�2�2 3 · · · 3 SU�2�L for fermions or
SU�1, 1�1 3 SU�1, 1�2 3 · · · 3 SU�1, 1�L for bosons.
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A complete set of states in this Hilbert, which are space
spanned by the pair operators (1), is given by

jn1, n2, . . . , nL, n� �
1

p
N

A
yn1
1 A

yn2
2 · · · A

ynL
L jn� , (4)

where N is a normalization constant. The possible num-
ber of pairs in each level is 0 # nl # Vl�2 for fermion
systems or 0 # nl # N�2 for boson systems. A state
jn� � jn1n2 · · · nL� of unpaired particles is defined as

Al jn� � 0, n̂ljn� � nljn�, K0
l jn� � dl jn� , (5)

where dl � �nl

2 6
Vl

4 � and N � 2M 1 n, M being the
number of pairs and n the total number of unpaired par-
ticles. We will borrow from nuclear physics [9] the name
seniority for the number of unpaired particles in each
level nl .

In the product spaces mentioned above a model is in-
tegrable if there are L independent global operators com-
muting with one another. These operators are the quantum
invariants and their eigenvalues are the constants of mo-
tion of the system. In looking for these operators, let us
define the most general combination of one and two body
operators in terms of the K generators with the condition
of being Hermitian and number conserving:

Rl � K0
l 1

(
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l0�fil�

Xll0
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l K2
l 0 1 K2

l K1
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7 Yll 0K
0
l K0
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)
. (6)

Up to now the matrices X and Y are completely free,
but we will fix them imposing the condition that the R
operators should commute among one another to define
an integrable model. The condition �Rl, Rl 0� � 0 will be
fulfilled if they are antisymmetric and satisfy the following
equation:

YijXjk 1 YkiXjk 1 XkiXij � 0 . (7)

An analogous condition has been encountered by
Gaudin [10] in a spin model known at present as the
Gaudin magnet. His model is based on R operators
similar to (6) but without the one body term. He found
three different solutions for the condition (7) which can be
grouped together in compact form as Xll 0 �

g

sin�g�hl2hl0 �� ,
Yll 0 � g cot�g�hl 2 nl 0��, where the different models are
distinguished by the value of g.

I. The rational model: g ! 0

Xll 0 � Yll 0 �
1

hl 2 hl 0
. (8)

II. The trigonometric model: g � 1

Xll 0 �
1

sin�hl 2 hl 0�
, Yll 0 � cot�hl 2 hl 0� . (9)
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III. The hyperbolic model: g � i

Xll 0 �
1

sinh�hl 2 hl 0�
, Yll 0 � coth�hl 2 hl 0� .

(10)
hl is an arbitrary set of nonequal real numbers. Each so-
lution gives rise to an integrable model and any combina-
tion of the R operators produces an integrable Hamiltonian.
Since the three models have quite different properties, we
prefer to continue our derivation in an independent way. It
is worthwhile to mention here that if we relax the condition
of the number conservation on the set of operators (6) there
is a general solution in terms of elliptic functions [10].

The rational model has been recently proposed in
Ref. [6] to demonstrate the integrability of the PM Hamil-
tonian. Indeed the PM Hamiltonian can be obtained from
the rational model by means of linear combination of R
operators HP � 2

P
l hlR

I
l plus an appropriate constant

to give

HP �
X

l

´l n̂l 1
g

2

X
ll 0

A
y
l Al 0 , (11)

where the free parameters hl have been replaced by the
single particle energies ´l .

Then, the PM Hamiltonian is diagonal in the basis of
common eigenstates of the R operators. But, also, any
arbitrary linear combination of the R operators defines a
valid integrable Hamiltonian. In the latter case, the total
number of free parameters in defining the Hamiltonian is
2L 1 1 for fermion as well as for boson systems.

We would like to emphasize that the demonstration of
integrability given above for the three models does not im-
ply that they are exactly solvable, i.e., that the complete
set of common eigenstates of the R operators can be ob-
tained. As mentioned before, Richardson only worked out
the eigenstates for the PM Hamiltonian and, as a matter of
fact, the authors of Ref. [6] were not aware of the existence
of that exact solution. Very recently [11] the eigenvalues of
the R operators of the rational model for fermion systems
were obtained, within a conformal field theory formalism,
in the fully paired subspace (nl � 0) and with constant de-
generacy Vl � 2.

To begin our derivation we will propose an ansatz for the
eigenstates of the R operators in the Hilbert space of states
(4) which is a generalization of the ansatz used by Richard-
son to find the eigenstates of the PM. The exact eigen-
states for the three models can be written as product pair
wave function acting on the space of unpaired particles jn�

jC� �
MY

a�1

By
ajn�, By

a �
X

l

ul�ea�K1
l . (12)

The function u depending on the pair energies e has the
form of the eigenstate of the one pair problem in each of
the three models, and the set of parameters e is left as free
parameters to be fixed in order to fulfill the L eigenvalue
equations

RijC� � rijC� . (13)
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The collective amplitudes in the pair operators B for
each model are

uI
ai � ui�ea� �

1
2hi 2 ea

, (14)

uII-III
ai � ui�ea� �

1
sn�ea 2 hi�

. (15)

We will treat on equal footing the trigonometric and the
hyperbolic models to solve the eigenvalue equation (13).
To embody both derivations in the same formalism we will
use the symbols sn for sin or sinh, cs for cos or cosh, and ct
for cot or coth, not to be confused with elliptic functions.
Note that we have already used sn in (15).

Here we summarize the final results for the three models
leaving the details of the derivation for a future publication.

Model I:

1 6 4g
X
j
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2hj 2 ea

7 4g
X

b�fia�

1
ea 2 eb

� 0 , (16)
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X
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#
.

(17)

Models II and III:

1 7 2g
X
j

djct�ea 2 hj� 6 2g
X

b�fia�
ct�eb 2 ea� � 0 ,

(18)

ri � di

(
1 7 2g

" X
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djct�hi 2 hj�

2
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In order to obtain the pair energies ea , given a set of
parameters h and a pairing strength g, one has to solve
the coupled set of M nonlinear equations (16) for the ra-
tional model or (18) for the trigonometric or hyperbolic
models, respectively. In the limit g ! 0 one immediately
realizes that the equations (16), (18) can be fulfilled only
for ea ! 2hi. Then the amplitudes uai in (14), (15) be-
come diagonal and we see that the states (12) are equivalent
in this limit to the complete set of uncorrelated states (4).
From this g ! 0 limit one can construct the ground state
(with pairs filling the lowest possible states), and the con-
figurations of the successive excited states. For example,
the first excited state is obtained by promoting the highest
energy pair to the next upper 2h value, or by breaking a
pair (removing a pair energy) into two unpaired particles
(increasing the seniority n by 2). One then follows the
trajectory of the pair energies ea for each of the configu-
rations as a function of g solving the equations (16), (18).

For boson systems the pair energies stay always real,
but for fermion systems the pair energies can be either
real or complex conjugate pairs. In the latter case there
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might arise singularities in the solution of the equations
(16), (18) for some critical value of the pairing strength
gc for which two or more pair energies acquire the same
value. It can be shown [12] that each one of these critical
g values is related to a single particle level i and that
at the critical point 1 2 2di pair energies must be equal
to 2hi. These singularities cancel out in the calculations
of energies which do not show any discontinuity in the
vicinity of the critical points.

The eigenvalues of the R operators, given by (17) or
(19), respectively, are always real since the pair energies
are real or complex conjugate pairs. Each solution of the
nonlinear set of equations produces an eigenstate common
to all Ri operators, and consequently to any Hamiltonian
written as a linear combination of them. The correspond-
ing eigenvalue is the linear combination of the ri eigenval-
ues. As mentioned before, the most important feature of
the three families of models is that they are exactly solvable
in any dimension. The dimensionality enters through the
degeneracies di � ni�2 2 Vi�4. The information about
states with nonzero seniority (broken pairs) also enters
through the same term. Symmetry breaking terms, such
as anisotropic hoppings or disorder, might lift up the de-
generacies but still leave the Hamiltonian as exactly solv-
able. In such cases the dimensionality would show up in
the density of states.

Next we will present the first results for the rational
model of fermions in a 2D square lattice of P 3 P sites
with periodic boundary conditions and a repulsive pairing
interaction. Assuming a restricted hopping term between
nearest neighbors, the single fermion levels are ´k �
22�coskx 1 cosky�, with ks � 2pns�P and 2P�2 #

ns , P�2. Here we will consider a 6 3 6 lattice at
half filling (M � 18) with a PM Hamiltonian for which
hi � ´i in (16), but the properties we will discuss are
quite general and independent of the latter choice.

The single fermion energies ´k and the corresponding
degeneracies Vk are displayed in Table I. In the limit g �
0 the ground state is obtained by distributing the M � 18
pairs in the lowest possible states.

In Fig. 1 we show the real and imaginary parts of the
pair energies. Only the real part and the positive imagi-
nary part are shown for each complex conjugate pair. The
first level accommodates one pair which is forced to be
real. The next three levels accommodate four pairs each,
forming two pairs of complex conjugates in each level. In
the last level we can put five pairs of particles forming two
pairs of complex conjugates and one real pair energy. For
the critical value g1 � 0.1708 the first five pairs become
equal to 2´2 � 26 as discussed before. As seen in Fig. 1,

TABLE I. Single particle energies and degeneracies for the
6 3 6 lattice.

´j 24 23 22 21 0 1 2 3 4
Vj 2 8 8 8 20 8 8 8 2
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FIG. 1. Real and positive imaginary parts of the pair energies
ea for a 6 3 6 lattice at half filling as a function of g.

the real part of the first two complex conjugated pairs to-
gether with the first real pair energies crosses at 26 while
the imaginary parts go to zero. A similar situation arises
for the second critical point at g2 � 0.2407 in which five
pairs become equal to 2´3 � 24.

In spite of the quite involved behavior of the pair en-
ergies, the total energy displays a smooth behavior as a
function of g. In Table II we give some values of the
correlation energy density ��� �E�g� 2 EHF�g���P2��� and the
interaction energy density ��� �E�g� 2 E�0���P2��� as a func-
tion of g. The interaction energy increases with increasing
values of g, showing a tendency to saturation that is con-
sistent with its vanishing in the thermodynamic limit [13].
The correlation energy density decreases almost linearly
with g. These attractive pairing correlations based on a
repulsive interaction give further numerical support to the
work of Shastry [7] who found quasi-long-ranged order in
the thermodynamic limit of the model at half filling.

In summary, we have presented three families of new
exactly solvable models based on the pairing interaction
for fermion and boson systems. These models have the
important feature of being solvable in any dimension. We
have presented preliminary results for the properties of
066403-4
TABLE II. Correlation energy densities and interaction energy
densities for various values of g for the 6 3 6 lattice at half
filling.

g 0.0 0.1 0.2 0.3 0.4 0.5
Ecorr 0.0 20.74 21.55 22.37 23.19 24.03
Eint 0.0 0.12 0.18 0.22 0.25 0.28

the exact solution of the rational model in a 2D square
lattice with repulsive pairing interaction. This model may
be useful to study features of high-Tc superconductivity
because, in spite of the purely repulsive bare force, the
exact solution shows attractive pair correlations.

After completing this work we learned of a recent
preprint [14] in which the hyperbolic model is presented
for electrons in ultrasmall superconducting grains, how-
ever without applications. This model is equivalent to our
models II and III for fermions in 1D with seniority zero.
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No. BFM2000-1320-C02-02.
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