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We compute the tunneling density of states of doped multiwall nanotubes including disorder
and electron-electron interactions. A nonconventional Coulomb blockade reflecting nonperturbative
Altshuler-Aronov-Lee power-law zero-bias anomalies is found, in accordance with recent experimental
results. The presence of a boundary implies a universal doubling of the boundary exponent in the
diffusive limit.
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Carbon nanotubes provide a remarkable and exciting
arena for mesoscopic transport phenomena involving
strong electron correlations [1]. Recent experiments
on single-wall nanotubes (SWNTs) have established
the ballistic nature of SWNT transport and revealed
the Luttinger liquid (LL) behavior of one–dimensional
(1D) interacting fermions [2]. However, the situation is
less clear for multiwall nanotubes (MWNTs), which are
composed of several (about ten) concentrically arranged
graphite shells, where experiments seem more consistent
with diffusive transport [3], e.g., showing typical weak
localization features in the magnetoconductance.

Quite remarkably, several experimental observations of
MWNTs do not seem to fit into the framework of exist-
ing theories. The most prominent example concerns the
pronounced power-law zero-bias anomaly of the tunnel-
ing density of states (TDOS) found at low-energy scales,
E & 0.1 eV [4,5],

n�E� � Ea , a � 0.3 . (1)

Furthermore, the TDOS at the end of the MWNT, while
still of power-law form, is characterized by the boundary
exponent aend � 0.6. In this Letter, we show that these re-
sults can be understood in terms of a particularly effective
and nonconventional Coulomb blockade (CB) for tunnel-
ing into a strongly interacting disordered metal. Charge
propagation on the MWNT is then effectively two dimen-
sional (2D), but for very low energy scales not probed in
Ref. [5], E , E� with E� in Eq. (13) below, a crossover
to 1D pseudogap behavior [6] is expected.

The key ingredient in CB theory is the probability P�E�
that a tunneling electron excites electromagnetic modes
with energy E in the system [7]. The theory is meaningful
if these modes are harmonic, and then P�E� directly deter-
mines the TDOS [7],

n�E�
n0

�
Z `

2`
dE0 1 1 exp�2E�kBT�

1 1 exp�2E0�kBT�
P�E 2 E0� , (2)

where n0 is the noninteracting DOS. The probability P�E�
is the Fourier transform of exp�J�t��, with the phase cor-
0031-9007�01�87(6)�066401(4)$15.00
relation function (h̄ � 1),

J�t� �
Z `

0
dv

I�v�
v

�coth�v�2kBT � �cos�vt� 2 1�

2 i sin�vt�	 (3)

for a spectral density I�v� of electromagnetic modes. For
simplicity, we now focus on the zero-temperature case.
Provided I�v� remains finite for low frequencies, Eqs. (2)
and (3) then straightforwardly lead to the power law (1)
with exponent a � I�v ! 0�.

In a conventional CB system, I�v� is phenomenologi-
cally parametrized in terms of the total impedance Z�v�
[7], and one obtains a � Z�0���h�2e2�. Such a transmis-
sion line model directly explains the doubling of the end
exponent, since in the bulk case, one has effectively two
resistances in parallel as compared to the end case. Ap-
plying this model to MWNTs, however, one finds rather
small values for a, and, in addition, the observed voltage
dependence cannot be reproduced [5]. On the other hand,
for a LL, the elementary excitations are harmonic, I�v� is
known, and hence P�E� can also be computed exactly. The
resulting exponents can be written in terms of the standard
interaction parameter g, and the ratio a

LL
end�aLL is g de-

pendent and always larger than 2 [8,9]. In MWNTs, g is
modified by inner-shell screening, and the relation between
aLL and g is affected by the available subbands [10]. Es-
timating aLL and a

LL
end for the situation in Ref. [5], they

are at least 1 order of magnitude smaller than observed.
Hence neither conventional CB nor LL theory can explain
these data.

For a ballistic system, the full crossover in the CB be-
tween a (single-channel) LL and a (many-channel) classi-
cal resistor was worked out in Ref. [11]. The results of this
paper imply that it is crucial to take disorder into account
here. We thus have to (i) establish the harmonic nature of
the electromagnetic modes, (ii) compute the low-frequency
spectrum I�v� and hence the exponent a, and (iii) com-
pute the end exponent. Note that a perturbative treatment
of the interactions is not sufficient, as the power law (1)
is inconsistent with conventional (1D or 2D) Altshuler-
Aronov-Lee (AAL) predictions for the TDOS [12].
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However, 2D AAL logarithmic dependencies have been
observed for MWNT bundles, which presumably are
characterized by weaker interactions [13].

The main difference between MWNTs and SWNTs,
apart from the larger radii of MWNTs, R � 4 10 nm,
stems from the presence of inner shells. Although inter-
shell tunneling is largely suppressed for a number of rea-
sons [14], and hence transport proceeds only through the
outermost contacted shell [3], inner shells cause a screen-
ing of the electron-electron interaction. For a computation
of the TDOS, the latter effect, as well as spin and Fermi
(K) point degeneracy [1], can be included by a renormal-
ization of the electron-electron interaction potential U� �q�
[10], and hence we consider spinless electrons with only
one K point in what follows. Since different shells al-
ways have incommensurate lattices, a quasiperiodic ionic
potential from inner shells acts on outermost-shell elec-
trons. The effect of such a potential is very similar to a ran-
dom potential described by a mean-free path � � yt [15],
which can be estimated from a disordered tight-binding
approach using random on-site energies with variance s

2
E .

For nearest-neighbor hopping t0 and 2N 1 1 subbands
(see below), one finds [10]

� � �t0�sE�2R��2N 1 1� � 10R . (4)

Here sE � t0�10 corresponds to the hopping strength
between adjacent shells, and N � 5. Therefore disorder
is present even in impurity-free MWNTs. In addition,
“true” disorder imposed by imperfections, substrate
inhomogeneities, or defects can be important. Using
Matthiessen’s rule, �21 ! �21 1 �21

0 , where �0 is the
mean-free path due to “true” disorder. Typical values
of � � 5 100 nm were reported in Refs. [3–5]. Hence
disorder is still “weak,” kF� ¿ 1, and the possibility of a
diffusive phase of interacting electrons must be discussed.
Doped MWNTs are in between the 1D and 2D limits and
may be expected to show diffusive behavior over a wide
energy range, where the Anderson localization expected
for truly 1D disordered systems has not yet set in. We
mention in passing that the phase relaxation length is
066401-2
�f � 500 nm at 2 K, with the usual T dependence due to
electron-electron interactions [4].

The band structure of a clean nanotube is described
by a Dirac “light cone,” E� �k� � yj �kj, with �k � �k,k��
and quantized transverse momentum, k� � n�R, where
n � 2N , . . . , N and N � �kFR�. The Fermi velocity is
y � 8 3 105 m�s, and the number 2N 1 1 of 1D sub-
bands arising from periodic boundary conditions around
the circumference is determined by the doping level m via
kF � m�y. Since MWNTs studied experimentally so far
are characterized by rather large doping, m � 0.5 eV [16],
a typical value is N � 5. The nth subband is characterized
by Fermi velocity and momentum,

yn � y
p

1 2 �n�kFR�2, kn � kFyn�y . (5)

The theoretical description for small m is quite intricate
and will be given elsewhere, as the disorder causes loga-
rithmic divergences of the self-energy due to the vanishing
DOS of the Dirac cone [17]. Fortunately, these compli-
cations are absent for the case studied below, kFR ¿ 1.
In the following, we focus on energy scales E , y�R,
where it is sufficient to take a fixed N and thereby ignore
van Hove singularities associated with the opening of new
1D bands as the energy varies.

Let us start with the bulk TDOS, where standard dia-
grammatic perturbation theory [12] adopted to the MWNT
geometry is quite illuminating. The disorder-averaged
Greens function is

GR�A�E, �k� � �E 1 m 2 E��k� 1 i sgn�E��2t�21, (6)

and hence the noninteracting DOS is

n0 � 2
Im
p

Z dk
2p

X
k�

GR�E, �k� �
NX

n�2N

1
pyn

. (7)

Prefactors in expressions such as Eq. (7) are always chosen
to ensure the correct 1D limit for N � 0. In the 2D limit,
N ¿ 1, the above DOS is related to the conventional 2D
DOS, n2D � kF�2py, via n0 � 2pRn2D. The vertex
renormalization due to one impurity line is described by
j�v, �q� �
1

pn0t

Z dk
2p

X
k�

GR�E 1 v, �k 1 �q�GA�E, �k�

�
X
n

X
s�6

1
2pn0yn

�1 2 ivt 1 isynt�q 1 nq��
p

�kFR�2 2 n2 ��21, (8)
where q� � m�R is also quantized. In the low-energy
long-wavelength limit, vt, j �qj� ø 1, Eq. (8) implies

j�v, �q� � 1 1 ivt 2 Dq2t 2 D�q2
�t , (9)

with diffusion constants D � �t�pn0�
P

n yn and

D� � �t�pn0� �y�kFR�2
X
n

n2�yn # D .

One checks easily that D� ! D for large kFR, with D !

y2t�2. For N � 0, however, D� � 0 and D � y2t, and
therefore both 1D and 2D limits are correctly reproduced.
Summing the usual ladder series then directly implies a
diffusion pole, �1 2 j�v, �q��21.

To ensure the validity of the ladder approximation, how-
ever, the smallness of “crossed” diagrams first needs to be
checked. Since here one is actually in between the 1D
and 2D limits, the usual reasoning leading to a suppres-
sion factor 1�kF� for crossed diagrams does not apply.
Evaluation of the simplest diagram of the crossed type and
comparing it to the corresponding ladder diagram gives
066401-2



VOLUME 87, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 6 AUGUST 2001
a suppression factor f � �1�2�
P

n 1��pn0yn�2. Since
f � 1�2 for N � 0, it is clearly not justified to neglect
crossed diagrams for small doping level m, where one ap-
proaches the 1D limit. The resulting breakdown of the
diffusive picture in this limit is of course expected from
1D localization theory. For kFR ¿ 1, however, we obtain
f 
 ln�kFR���2p2kFR� ø 1, and are thus entitled to ne-
glect crossed diagrams. In that case, D� 
 D � y2t�2.

Here we consider an effectively short-ranged 1D inter-
action, U� �q� � U0, since the 1�r tail of the Coulomb in-
teraction potential is often externally screened, e.g., by
close-by metallic gates. Even when working on an insu-
lating substrate, a situation characterized by a long-ranged
interaction, the finite length of the MWNT will lead to a
cutoff for the logarithmic singularity. Note that U0 repre-
sents a 1D Fourier component and hence is appropriate for
screening lengths ls large compared to R. In the 2D limit,
R ¿ ls, this interaction constant is related to the respec-
tive 2D parameter via U0 � U2D�R. For the case of in-
terest here, R ø ls, and the order-of-magnitude estimate
U0�2py � 1 follows [10], implying a dielectric constant
e � 10. Under an extended Hubbard model description,
this amounts to U�t � 1 5 in standard terminology. The
first-order interaction correction to the TDOS can then be
obtained following well-known arguments [12,18]. Since
the Hartree correction is subleading, we focus on the ex-
change correction,

dn�E�
n0

� 2
t

p
Re

Z dq
2p

X
q�

U� �q�
j�E, �q�

1 2 j�E, �q�
. (10)

Together with Eq. (8), this result describes the complete
crossover from the ballistic LL to the diffusive limit. For
t ! `, no energy dependence is found, in agreement with
aLL � 0 to this order in U0. In the diffusive limit, how-
ever, Eq. (10) can be simplified to

dn�E�
n0

� 2
U0

2p
p

D
Re

NX
n�2N

�2iE 1 Dn2�R2�21�2.

(11)

The n � 0 contribution yields the E21�2 1D AAL correc-
tion, while the n fi 0 contributions give a 2D logarithmic
correction [12,18],

dn�E��n0 � a ln�E�E0� , (12)

with E0 � m and a � U0R��2pD�. Comparing the 1D
and 2D contributions in Eq. (11), we see that only for
sufficiently low-energy scales, E , E�, the 1D AAL law,
dn � E21�2, takes over, where we estimate

E� �
D

�2pR�2
(13)

for the crossover scale. Equation (13) holds for weak-to-
intermediate interactions, but may change for very strong
interactions. For E . E�, Eq. (12) then gives the leading
contribution, and the TDOS should be essentially equiva-
lent to the one of a 2D disordered interacting metal.
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Since in MWNTs the interactions are of intermediate
strength, the lowest-order result (12) is not sufficient.
Higher-order terms in U0 were recently discussed by
Kamenev and Andreev [19]. In the framework of the
dynamical Keldysh formalism for a 2D system with
long-ranged Coulomb interactions, a derivation of the
TDOS valid for arbitrary interaction strength has been
presented. Within the saddle-point approximation for the
emerging nonlinear s model, the electromagnetic modes
are indeed Gaussian, with spectral density [19]

I�v� �
v

p
Im

X
�q

1
�Dq2 2 iv�2

3

µ
U21

0 1
n0Dq2

Dq2 2 iv

∂21

. (14)

Adopting this result to MWNTs in the energy regime E .

E�, the bulk exponent a � I�v ! 0� follows as

a �
U0R
2pD

ln�1 1 n0U0�
n0U0

. (15)

For weak interactions, the second factor is close to unity,
and thus a is just the prefactor in Eq. (12). In effect, the
AAL logarithmic correction therefore exponentiates into a
power law. By using U0�2py � 1 and N � 5, we then
estimate a � R��. To compare with experiment, note that
� � 10R from Eq. (4), as long as only intrinsic disorder
via the inner-shell potentials is present. One then gets
the same exponent for different tubes, a � 0.1. When
“true” disorder is included, a should increase and depend
on the particular MWNT. This appears to be in qualitative
agreement with Ref. [5], where values between a � 0.24
and 0.37 were observed for 11 different MWNTs.

Next we turn to the boundary TDOS by considering a
semi-infinite MWNT, x $ 0. In the absence of disorder,
the boundary Greens function is (d � 01),

Gb
0 �E, k�; x, x 0� �

Z `

0

dk
2p

3
4 sin�kx� sin�kx0�

E 1 m 2 E� �k� 1 id sgn�E�
,

which can be written as Gh
0 �x 2 x0� 2 Gh

0 �x 1 x0� with
the homogeneous Greens function Gh

0 . Therefore the
boundary simply causes the “image term” 2Gh

0 �x 1 x0�.
To include disorder, it is convenient to solve the Dyson
equation in a real-space formalism. In the Born ap-
proximation, the self-energy is S�x� � �pn0t�21 3

�Gh
0 �0� 2 Gh

0 �2x��. If we retain only the Gh
0 �0� term in

the self-energy, the disorder-averaged boundary Greens
function is

Gb�E, k�; x, x0� �
Z `

0

dk
2p

4 sin�kx� sin�kx0�G�E, �k� ,

(16)
where we use Eq. (6). In the 1D limit, kFR & 1, the image
part 2Gh

0 �2x� in the self-energy is crucial and modifies the
structure of Gb. For the more interesting limit kFR ¿

1, it suffices to analyze a semi-infinite plane, with the
066401-3
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lowest-order correction from the image part

dGb��r , X� � 2
1

pn2Dt

Z
d �x00Gh

0

µ
�r
2

2 �x00

∂

3 Gh
0 �2x00 1 2X, 0�Gh

0

µ
�r

2
1 �x00

∂
, (17)

where the integration extends over the half plane, X �
�x 1 x0��2 is the distance to the boundary, and �r � �x 2
�x0 is the relative coordinate. For �r � 0, this can be seen
to vanish identically. Under the conditions that kFX ¿ 1
and kFr ¿ 1, Eq. (17) simplifies to

dGb� �r, X� 
 2
1

kF�n2D
Gh

0 �2X�Gh
0 �r� .

This gives subleading corrections to Eq. (16) that are sup-
pressed by a factor 1�kFX or 1�kFr, whichever is smaller.
As these corrections die out on the microscopic length
scale 1�kF , we take Eq. (16) in what follows.

The real-space diagrammatic perturbation theory can
then be carried out explicitly. Dressing the interaction ver-
tices with impurity lines within the ladder approximation,
the first-order correction to the TDOS at position x in the
diffusive limit is

dn�E, x�
n0

� 2
t

p
Re

Z dq

2p
2 cos2�qx�

X
q�

U� �q�

3
j�E, �q�

1 2 j�E, �q�
,

with j�E, �q� given by Eq. (9). For x ¿ �D�E�1�2, we
recover the bulk result (10). However, when tunneling
into the end of the MWNT, x ø �D�E�1�2, the prefac-
tor in Eq. (12) gets doubled. This doubling can be ra-
tionalized using the quasiclassical picture of Ref. [20],
where the TDOS at position x is related to the Fourier
transform of the return probability P�x, t�. The latter
satisfies the diffusion equation with the boundary condi-
tion that no current flows across the boundary, leading to
P�x, t��P�`, t� � 1 1 exp�2x2�Dt�. Close to the bound-
ary, the return probability is then doubled.

Repeating the above arguments leading to the power law
(1) for the bulk TDOS then implies again a power law, now
characterized by the boundary exponent aend � 2a. The
doubling of the exponent as one goes from the bulk to the
boundary is in agreement with the experimental results of
Ref. [5]. It should be noted that our derivation holds only
in the diffusive limit. Remarkably, this doubling—which
is based on the properties of the boundary diffuson close
to the edge—coincides with the prediction of the classical
resistor model.

Let us conclude by listing several open questions raised
by our work. Future work needs to address the situation at
066401-4
small doping levels, the magnetic field dependence of the
TDOS, and the conductivity. We hope that future theoreti-
cal and experimental works continue to reveal the subtle
and beautiful interplay of disorder, dimensionality, and in-
teractions presented by multiwall nanotubes.
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