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The time evolution of structure factors (SF) in the disordering process of an initially phase-separated
lattice depends crucially on the microscopic disordering mechanism, such as Kawasaki dynamics (KD)
or vacancy-mediated disordering (VMD). Monte Carlo simulations show unexpected “dips” in the SFs.
A phenomenological model is introduced to explain the dips in the odd SFs, and an analytical solution
of KD is derived, in excellent agreement with simulations. The presence (absence) of dips in the even
SFs for VMD (KD) marks a significant but not yet understood difference of the two dynamics.
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After a temperature “downquench” into a coexistence
region, binary systems such as magnets or alloys develop
long-range order in a universal fashion [1]. Determined by
symmetries and conservation laws, the dynamic coarsening
follows one of a small number of scenarios, characterized
by dynamic scaling and universal exponents. Considerable
work has been devoted to the theoretical foundations of this
behavior [2]. By contrast, far less attention has focused
on the opposite phenomenon, i.e., disordering following
an upquench in temperature, even though it is hardly less
important in materials science: It determines, e.g., the
time evolution of an interface between two materials or the
waiting times which must elapse before a heated material
has mixed sufficiently.

A key ingredient in the physics of these processes is
the kinetic mechanism by which two particles exchange.
In many materials, it is dominated by the diffusion of va-
cancies or defects [3], rather than direct atom-atom ex-
changes. Vacancy concentrations are typically very small
(�1025� [4]. For this type of dynamics, it has recently
been shown [5] that a simple mean-field theory suffices to
obtain a quantitative description of disordering character-
istics which are controlled by short-range correlations.

In this Letter, we show that this mean-field theory fails
dramatically, even at the qualitative level, to predict the
dynamics of observables which include correlations over
larger distances in the system. A typical example is the
time-dependent equal-time structure factor. We present
Monte Carlo (MC) simulation data and a microscopic the-
ory, illustrating the crucial role played by the details of
the whole vacancy path. Comparing data for vacancy-
mediated and direct exchange dynamics, we obtain a key
result of our study, namely, that experimental data for the
equal-time structure factor can identify the microscopic ki-
netic mechanism by which a material evolves. We con-
clude with a list of open questions.

We consider a d-dimensional square lattice of size Ld

(L even, for simplicity) with periodic boundary conditions.
Each site �ı is occupied by one of two types of particles,
which we label as spins: s�ı � 61. A single spin is tagged,
playing the role of a vacancy or defect. Only this “va-
0031-9007�01�87(6)�065701(4)$15.00
cancy spin” is allowed to move, all others being passive.
Turning to the microscopic dynamics, we define two ver-
sions: (i) The vacancy performs a Brownian random walk
on the lattice, exchanging with nearest-neighbor spins and
thus scrambling the spin configuration, or (ii) the tagged
spin performs one single step and then passes the tag to
another, randomly selected spin. This sequence is then re-
peated. Note that both versions strictly conserve particle
number (or total magnetization,

P
�ı s�ı). The first is known

as vacancy-mediated dynamics (VMD) [3,4]; the second is
precisely Kawasaki dynamics (KD) [6]. In the language of
Ising models, they correspond to T � ` dynamics, since
energy costs are ignored. Yet, we consider a perfectly
phase-segregated initial configuration (up and down spins
separated by two planar domain walls perpendicular to,
say, the x axis), corresponding to T � 0. At time t � 0,
the system experiences a temperature upquench, from zero
to infinity, and we monitor the disordering process as a
function of time. For t ! `, the system clearly reaches
the infinite temperature equilibrium state, characterized by
completely random configurations.

We monitor the time-dependent structure factors,
S �k�t� � L2d�j

P
�; s�;�t� exp�2i �k ? �;�j2�. Here, �≤� denotes

the time-dependent average over a large number (1000
for our data) of independent runs, starting from the same
T � 0 configuration differing only in the random initial
position of the tag. MC time is incremented by 1 for each
exchange. The most interesting structure factors are those
whose wave vector �k is perpendicular to the initial phase
boundary, �k � �2pn�L, 0, . . . , 0�, with n integer. For odd
n ø L, they are sensitive to the initial order so that S�k�0�
is of the order Ld, while for even n, S�k�0� � 0 (since L
is even). For brevity, these two classes are referred to as
odd and even �k. Clearly, limt!`S�k�t� � 1 for all �k, due
to the random final state.

For reference, we review a few key results from [5].
The disordering process displays three regimes, separated
by two characteristic times, tE � L2 and tL � Ld12. For
t & tE only a fraction of sites has been visited by the va-
cancy, and the equilibrium state is reached for t * tL. Be-
tween these well-separated bounds lies the “intermediate
© 2001 The American Physical Society 065701-1
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regime,” in which the vacancy visits each site many times
without destroying much of the initial order. Here, the
disorder parameter, being the number of broken nearest-
neighbor bonds, displays dynamic scaling with universal
exponents before reaching its equilibrium value.

Turning to structure factors, in Fig. 1 we compare MC
data for a 160 3 160 lattice, with (a) VMD and (b) KD.
First, note that three regimes emerge again. The final
regime is easily identified by all S�k’s reaching unity. In the
intermediate regime, the odd S�k’s clearly display the de-
cay of the initial order which remained largely unaffected
during the earliest regime. Second, we emphasize a rather
peculiar feature, namely, that several structure factors de-
velop a minimum, manifested as a small “dip” before they
finally tend to their equilibrium value. For VMD this dip
appears in all structure factors except the two lowest ones,
i.e., n � 1, 2 (strictly speaking, in n � 4 it emerges as a
“shoulder”). In contrast, for KD it exists only in the odd
S�k’s. At first sight, these dips might suggest a temporary
rebound towards order. We show below, however, that
their origin is different.

FIG. 1. Time evolution of the first eight structure factors S �k

with �k � �2pn�L, 0�, n � 1, 3, 5, 7, 8, 6,4, 2 from top to bot-
tom, on a d � 2 lattice of size L � 160 with (a) VMD and
(b) KD. The thick solid straight lines in the insets, which show
the magnified crossover region, have slope 1�2. The two dashed
vertical lines window the intermediate regime.
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Third, turning to “short” times, just after the onset of
the intermediate regime, we observe a clear difference in
the even structure factors for the two types of dynam-
ics, displayed more visibly in the data for a much larger
(L � 500) lattice (Fig. 2): The short-time behavior for a
VMD system appears to be S �k � tgV with a short-time ex-
ponent gV 	 1, whereas the KD system follows S�k � tgK

with gK . 1. Below, we see that gK � 3�2 exactly, in the
L ! ` limit. Thus, the presence or absence of dips and
the short-time behavior offer a simple signature to distin-
guish VMD from KD. Finally, Fig. 1 indicates that dis-
ordering by KD is faster than VMD by a factor of about
4.5. This factor is roughly independent of the lattice size
but decreases with d [7]. We emphasize that, in all fig-
ures, the error bars are of the order of the line thickness
and therefore not shown.

We now turn to the theoretical descriptions of our model.
A “two-fluid” model.—To motivate this approach, we

briefly recall the key ingredients of the mean-field theory
[5]. Coarse graining the microscopic dynamics in space
and time, we identify two slow variables, namely, the local
vacancy and magnetization densities, w��r , t� and c��r , t�.
In the intermediate regime, the vacancy distribution has
already reached its equilibrium value, wo � L2d , so
that the only nontrivial dynamics is embodied in c��r , t�,
which obeys a simple diffusion equation: ≠tc � D=2c.
Here, the diffusion coefficient D ~ wo reflects the
presence of a single vacancy. The solution, with initial
condition c��r , 0� � sgn�x�, jxj # L�2, and periodic
boundary conditions, is c�x, t� �

P
k

4
ikL eikxe2Dk2tdn odd,

where k � 2pn�L and dn odd � 1 for n odd and 0
otherwise.

We propose to describe the local spin density by the
incoherent sum of two components (“fluids”), represent-
ing the ordered and disordered fractions. The ordered
component, starting from being 100% phase segregated

FIG. 2. Short-time behavior of the first four even structure
factors on a d � 2 , L � 500 lattice with VMD, averaged over
1000 runs. The thick solid line has slope 1; the vertical line
indicates the beginning of the intermediate region.
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and ending at zero, can be taken as c�x, t�. The remaining
component, with density 1 2 jc�x, t�j, is fluctuating so
that it will be represented by �1 2 jc�x, t�j�h�x, t�, where
h�x, t� is a delta-correlated noise with zero mean. Sum-
marizing, we write the spin density s�x, t� as

s�x, t� � c�x, t� 1 �1 2 jc�x, t�j�h�x, t� . (1)

Taking the Fourier transform of s�x, t� and averaging over
h to obtain Sk�t�, we find the final result

Sk �t� � Ld

∑
2e2n2t�t

pn

∏2

dnodd 1
X

n0 odd

∑
2

1 2 e2n02t�t

pn0

∏2

,

(2)

where t � L2��4p2D� plays the role of tL. The first term
captures the decay of the initial ordered fraction. Note that
only the odd k’s are present. By contrast, the second term
is k independent and reflects the buildup of the disordered
component.

The origin of the dips is now apparent: The first term
starts with a macroscopic amplitude but decays on the
time scale t�2n2. Meanwhile, due to the sum over all
n0, the second term rises to unity with t, regardless of
n. Therefore, Sk�t�, for odd k, does not decay to unity
monotonically. Further, these dips occur at earlier times
for larger k’s, a feature which agrees with the data, at least
qualitatively (Fig. 1). We believe that the contrasting terms
may be interpreted physically, the first being associated
with the relatively fast deterioration of the initial phase
boundary while the second represents the slower buildup
of the disordered component.

Equation (2) leads us to another prediction, namely, how
the final state is approached. By Poisson resummation
[8], it can be shown that the second term increases as
t1�2 for times t & t. This effect is most easily seen in
the even S �k’s where the ordered contribution is absent.
The simulation data show excellent agreement with this
behavior for both VMD and KD (Fig. 1).

Not surprisingly, this simple approximation has its short-
comings: According to Eq. (2), all even structure factors
share the same behavior, which is clearly not borne out by
the simulations. Moreover, Eq. (2) gives no indication of
an early-time crossover from a tg to a t1�2 behavior. To
improve our understanding, we now turn to an exact for-
mulation of the dynamics.

Exact lattice calculation.—In the following, we analyze
the microscopic motion of the vacancy on the lattice. The
resulting equation of motion for the structure factor is exact
and can be solved in the case of KD. Here, we summarize
the key features of this approach, deferring all details to a
later publication [7].

Clearly, the dynamics at each time step (for both VMD
and KD) depends on the exchange of only two spins, so
that the Liouvillian in the master equation ≠tP�
s�ı�; t� �P


s0�ı� L �
s�ı�; 
s0�ı��P�
s0�ı�; t� consists of a sum over terms
of the form d�s0�ı ; s�;�d�s�ı; s0�;�. As a result, the equation
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for G��x; t�, the two-point function, is linear and involves
no higher correlations. Specifically, in the KD case, one
obtains (for �x fi �0)

dLd

2
≠tG��x; t� � D�xG��x; t� 1

X

 �b�

d�x, �b�G� �b; t� 2 G��0; t�
 ,

(3)

where ≠t , D�x , and 
 �b� stand for discrete time differences,
the lattice Laplacian, and the set of 2d lattice vectors,
respectively. Taking the Fourier transform of Eq. (3), we
may write an equation for the structure factor in the form

≠tS�k �
X
�k0

X�k �k 0S�k 0 . (4)

An alternative approach starts with an equation of
motion [9]: ≠ts�ı�t� � �s �y1 �b�t� 2 s �y�t�
 �d�ı �y 2 d�ı, �y1 �b�,
where �y is the position of the tag at time t and �b is a lattice
vector which specifies the direction of the exchange. In
Fourier space, s̃�k�t 1 1� �

P
�k 0 M�k �k 0� �y, �b�s̃�k 0�t�, where

M�k �k 0 � d�k �k 0 2 e2i��k2�k 0� �y�1 2 e2i �k �b� �1 2 ei �k 0 �b��Ld. Since
the structure factor is defined by S�k�t� � �s̃�k�t�s̃2�k�t��,
where the average is over all possible moves over the
entire time period �0, t
, we obtain, formally,

S�k�t� �
X


 �pi�,
 �qi�
�M�k �pt21

M2�k �qt21
M �pt21 �pt22

M �qt21 �qt22

· · · M �p1 �p0M �q1 �q0�s̃ �p0�0�s̃ �q0 �0� . (5)

For VMD, the allowed moves are correlated leading to a
nontrivial average. For KD, however, the position of the
vacancy is randomized before each exchange, so that the
above average factorizes into t factors. Cast in the form of
an evolution equation, the result is precisely Eq. (4), with
X�k �k0 � �M�k �k 0M2�k2�k 0� �y, �b 2 d�k �k 0.

With either approach, the eigenvectors and eigenvalues
can be found exactly in the L ! ` limit. Deferring de-
tails to [7], we quote only the result for d � 2. With
the reminder that �k � �2pn�L, 0� and the initial value
S�k�0� � �2L�pn�2dnodd, we obtain

S�k�t� � S�k�0�e2�2pn�L2�2t

1
4

p2

X
lfin

n2�1 2 e2�2pl�L2�2t
dl odd

l2�n2 2 l2�
. (6)

As in the two-fluid model, the two terms carry the same
interpretations, confirming a key mean-field result: the
associated crossover time scaling with L4. In addition,
comparing the first terms in Eqs. (2) and (6), we may
identify the diffusion constant D as 1��2L2�. The main
improvement is the �k dependence in the disordered com-
ponent. In more detail, Eq. (6) correctly accounts for the
presence (absence) of dips in the odd structure factors for
065701-3
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FIG. 3. Comparison of Monte Carlo data (circles) for KD
[same data as in Fig. 1(b)] and the exact calculation (solid lines)
for the same structure factors as in Fig. 1. The dashed line has
slope 1; the solid lines have slope 3�2 for small times.

n . 1 �n � 1�. Turning to early behavior within the in-
termediate regime, we notice that for short times (t � L2),
the behavior of the sum in Eq. (6) is controlled by the large
l contributions, whence l2 2 n2 � l2. Using Poisson re-
summation, we find S�k�t� ~ n2t3�2. Both the t and the n
dependence are borne out by the data. For larger times,
n2t�L4 � 1, a third power law emerges which is particu-
larly noticeable for large n. Here, the sum is dominated
by smaller l, so that n2 2 l2 � n2. Resummation now
yields t1�2, with an n-independent amplitude. For large n,
this power law sets in at earlier times, so that structure fac-
tors with larger n merge before being joined by S�k’s with
smaller n. Figure 3 shows a direct comparison of MC data
with Eq. (6). Excellent agreement is observed over many
orders of magnitude without any fit parameters.

Conclusions.—Using MC simulations and analytic ar-
guments, we analyzed two types of microscopic kinetics
(vacancy-mediated and Kawasaki dynamics). The struc-
ture factors display several remarkable features, which
characterize different temporal regimes. Just before the
onset of equilibration, the competition of surface- vs bulk-
dominated time scales generates unexpected minima in
several structure factors. These are particularly prevalent
in the “odd” structure factors that are sensitive to the initial
order. In contrast, the “even” structure factors grow via a
sequence of different power laws before saturating. This
sequence includes a t3�2 regime for KD and a t regime for
VMD. Moreover, VMD generates dips in even structure
factors which are absent in KD. All of these features carry
over to larger system sizes and d � 3; in fact, the range of
the power law behaviors increases significantly with sys-
tem size. Thus, the structure factors carry a clear signature
of the underlying microscopic dynamics. We believe that
this could lead to a simple experimental identification of
065701-4
the dominant kinetic mechanism in a material, e.g., via
small-angle x-ray or neutron scattering.

Two complementary theoretical approaches — a phe-
nomenological coarse-grained two-fluid model and an
exact lattice calculation —provide quantitative insight into
the physical origin of these features. Several questions
remain open. First, our exact lattice analysis can be
carried out only for KD, where the dynamics of the spins
is Markovian. For VMD, in contrast, though the vacancy
path is random, it induces nontrivial correlations in the
spins. Work is in progress to extend our analysis to this
case [7]. Presumably, these correlations are also at the
root of the observation that VMD equilibrates more slowly
than KD, by a factor of about 4.5 in d � 2. It is not clear
at this stage, however, whether this effect can be captured
by an appropriate generalization of correlation factors
[10]. Finally, the effect of several vacancies or tags should
be investigated, as well as upquenches to temperatures
other than infinity. These cases have so far been studied
only at the mean-field level [5].
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