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Slow Group Velocity and Cherenkov Radiation
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We study theoretically the effect of ultraslow group velocities on the emission of Vavilov-Cherenkov ra-
diation in a coherently driven medium. We show that in this case the aperture of the group cone on which
the intensity of the radiation peaks is much smaller than that of the usual wave cone associated with the
Cherenkov coherence condition. As a specific example, we consider a coherently driven ultracold atomic
gas where such singular behavior may be observed.

DOI: 10.1103/PhysRevLett.87.064801 PACS numbers: 41.60.Bq, 42.25.Bs, 42.50.Gy
The recent observation of ultraslow group velocities in
coherently driven media [1–3] has opened the way to-
wards new regimes of light propagation [4] and nonlinear
optics at very weak intensities [5]. In this Letter, we in-
vestigate the effect of ultraslow group velocities on the
Cherenkov radiation emitted by a charged particle uni-
formly moving with a velocity larger than the phase ve-
locity of light. In the case of isotropic and nondispersive
media, the surface on which the intensity peaks coincides
with the well-known wave cone orthogonal to the wave
vector of the emitted light and the aperture of which is de-
termined by the usual Cherenkov coherence condition. In
the case of highly dispersive media, as we show here, the
intensity is instead peaked on the surface of a group cone
[6] much narrower than the wave cone and orthogonal nei-
ther to the phase nor to the group velocity of the emitted
light. First, we develop a general theory for Cherenkov
emission in arbitrary dispersive and nonisotropic media
from which we obtain analytical expressions for the elec-
tric field intensity profile and, in particular, for the group
cone aperture. Second, for illustrative purposes, we inves-
tigate the optical properties of a coherently driven ultracold
atomic cloud of 23Na atoms which appears to be amenable
to the observation of such singular behavior. A clear dis-
tinction between wave cone and group cone is expected
to clarify the role of the group velocity in the process of
Cherenkov emission.

Consider a charged pointlike particle moving with con-
stant velocity w � wẑ � cbẑ through a nonabsorptive
and homogeneous medium characterized by an anisotropic
and dispersive Hermitian dielectric tensor ê�v� � ei,j�v�.
The effects of weak absorption will be considered later for
the case of interest. Using Maxwell equations in Fourier
space, we write the �k, v� component of the radiated
electromagnetic field E�k, v� in terms of the correspond-
ing Fourier components of the current density J�k, v� �
2pqd�v 2 k ? w�w as
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k2 is the projection operator on the
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modulus of k.
The poles of (1) determine the propagating modes of

the electromagnetic field through the well-known Fresnel
equation [7] µ
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For each wave vector k, the different modes are character-
ized by the frequency va and the polarization unit vector
e�a� normalized as �e�a� j e�a�� �

P
i e

�a��
i e

�a�
i � 1. We

will not account here for longitudinal modes, assuming
v2 fi 0 and det�ê�v�� fi 0 for all values of v. For each
mode, the group velocity can be shown to be [8]
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We shall also restrict our attention to the simple case of a
medium with rotational symmetry around the direction of
the charge velocity; in this case, the revolution symmetry
of the dispersion surface va�k� � v guarantees the par-
allelism of the components of the group velocity and the
wave vector perpendicular to the ẑ axis.

The electric field at a position x � �x�, z� � �x�û�,z�
can be obtained from the inverse Fourier transform of (1).
At sufficiently large distances from the charge trajectory,
only the poles of (1) effectively contribute to the Fourier
transform. In fact, the electric field at these distances is
given by the resonant excitation of propagating modes,
while the nonresonant contribution from all other modes
decays in space with a faster power law [9]. Within such
an approximation we can write, for the ith component,
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Here, ŵ � w�w is the direction of the charge velocity w
and ma � �e�a� j

≠

≠k�
�k2P̂ k� je�a�� is a weight factor. In

obtaining the expression (4) the angular integration in k�

has already been performed in the large k�x� limit so that,
for each position x�, only the field components with k�

parallel to x� have a stationary phase and therefore give a
nonvanishing contribution to the integral.

Depending on the velocity of the charged particle, for
each direction û� and frequency v, at most two distinct
poles at k

�a�
� �a � 1, 2� contribute to the integral, which

correspond to propagating modes with wave vector k�a� �
�k�a�

� û�, v�w� and polarization e�a�. As shown in Fig. 1,
at a given frequency v the Cherenkov light is emitted into
the mode a only if the kz � v�cb plane has a nonvanish-
ing intersection with the dispersion surface va�k� � v of
the mode. In the case of a medium with rotational sym-
metry, this condition is satisfied if the particle velocity ex-
ceeds the phase velocity of mode a for k parallel to w, i.e.,

b2 .
v2

c2k�a�2

Ç
kkw

�
1

e
�a�
� �v�

(5)

and the intersection is the k� � k
�a�
� circle. Here e

�a�
� �v�

are the eigenvalues of the dielectric constant in the plane
perpendicular to the ẑ axis. For an isotropic medium, the
condition (5) reduces to the usual Cherenkov condition
b2e�v� . 1 [10].

The theory developed up to now has considered the case
of a nonabsorptive medium for which the poles k

�a�
� are

real; the effect of a weak absorption consists of the in-
troduction of a small and positive imaginary part Im�k�a�

� �
in the argument of the exponential in (4) without modifying
the pole structure of the integral. The resulting damping
factor e2Im�k�a�

� �x� accounts for the absorption of the emit-
ted radiation during propagation.

We now consider a medium with a narrow transparency
window centered at v̄; for a single polarization state
a � 1, the absorption factor in the neighborhood of v̄ can
be approximated by Im�k�1�

� � � h

2 �v 2 v̄�2 with h �

α=1
α=2

kz

k

kz=ω / cβ3

kz=ω / cβ2

kz=ω / cβ1

FIG. 1. Schematic plot of the longitudinal cross section of the
dispersion surfaces for the two propagating a � 1, 2 modes at
a given v. The vertical lines are the cross sections of the kz �
v�bc planes. For b � b1, no Cherenkov radiation occurs at
v; b � b2 is the threshold velocity for the a � 1 mode; for
b � b3, both modes are excited.
064801-2
≠2 Im�k�1�
� ��≠v2. Inserting this expression into (4), we

finally obtain an explicit expression for the electric field
intensity profile,
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where e�1� is the polarization vector of the mode at fre-
quency v̄ and A � 4k

�1�
� v̄2�c4m

2
1h. The radial velocity

yr is defined according to
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where y�
g and yk

g are, respectively, the perpendicular and

parallel components of the group velocity v�1�
g with respect

to the direction ŵ � w�w of the charge velocity. As can
be observed in Fig. 2, sufficiently far from the charge, i.e.,
at points x� ¿ j � hy2

r , the electric field intensity (6) is
peaked on the group cone described by

x�

yr
1

z

w
� t (8)

whose aperture u is given by

tanu � yr�w . (9)

In general, u is different from the aperture f of the wave
cone orthogonal to the wave vectors of the emitted ra-
diation, which is instead given by tanf � v̄�wk

�1�
� . A

simple physical interpretation of the group cone can be
put forward in terms of group velocity [6] considering that,
for each direction around the charge velocity, the burst of
Cherenkov light is emitted into a group of modes centered
at k�1� while the peak of the pulse moves in space with
a velocity equal to the group velocity v�1�

g experiencing
an almost negligible absorption. The cone defined by this
geometrical construction (Fig. 3) can be proven in all cases
to be equivalent to the group cone defined by (8) and to
coincide, for the case of an isotropic medium, with the
group cone introduced by Frank [6]. Notice that this cone
turns out to be in general orthogonal neither to the group
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FIG. 2. Intensity contour plot of the longitudinal cross section
of the group cone at t � 0 for y�

g �w � 0.01.
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velocity nor to the wave vector. In the case of isotropic and
nondispersive media, in which vg � vph �

c
n k̂, n being

the refractive index, the group and wave cones coincide
and have an aperture f defined by the usual Cherenkov
condition bn sinf � 1.

The weak dispersion of common dielectrics makes the
difference between the group and wave cones very small
and has prevented up to now its experimental observation
[6]. When the group velocity is much smaller than the
phase velocity, the group cone is expected to be well sepa-
rated from the wave cone (Fig. 3) and to have an extremely
narrow shape, u ø 1. Following the recent observations
of ultraslow light in coherently driven hot [1,2] and cold
[3] atomic gases, such media appear as promising candi-
dates for the experimental characterization of the role of
group velocity in Cherenkov radiation.

Consider a cloud of ultracold atoms [11] in a three-level
L-type configuration and take, as a specific example, the
case of 23Na atoms (Fig. 4) magnetically trapped in the
MF � 21 sublevel of the Fg � 1 ground state. Let vg

be the frequency of such a state. The other hyperfine com-
ponent of the S1�2 ground state is a metastable state with
Fm � 2 approximately 1.8 GHz blue-detuned with respect
to the ground state. A weak coherent field polarized along
the trap magnetic field drives the optical transition from
the metastable state to the Fe � 2 hyperfine component
of the P1�2 excited state. Its Rabi frequency V is smaller
than the excited state linewidth ge � 2p 3 10 MHz,
while its frequency is taken to be exactly on resonance
with the transition between the MF � 0 Zeeman compo-
nents vdr � ve�MF � 0� 2 vm�MF � 0�. Assuming
the charge velocity to be parallel to the trap magnetic field,
the rotational symmetry of the system around the ẑ axis
implies [13] the following decomposition of the dielectric
tensor: ê�v� � ez�v� j ẑ� �ẑj 1 e1�v� jŝ1� �ŝ1j 1
e2�v� jŝ2� �ŝ2j. For each frequency v and direction k̂,
the two propagating modes defined by (2) are generally
nondegenerate, except at high symmetry points, and have
elliptical polarizations; from the point of view of the
spatial symmetry of the optical constants, the polarized
atomic cloud is in fact not only uniaxial but also optically
active. Since the linewidth gm of the metastable m state is
orders of magnitude smaller [3] than that of the excited e
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θ w   z
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FIG. 3. Geometrical construction for the group cone. During
the time Dt, the charge moves from A to B with !

AB � wDt,
while the radiation emitted in A propagates from A to C with
!

AC � vgDt. As discussed in the text, the straight line joining
B and C is a generatrix of the group cone.
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state ge, electromagnetically induced transparency (EIT)
occurs on the ŝ1 polarization in a narrow frequency
window of linewidth G � V2�ge ø ge around v1 �
ve�MF � 0� 2 vg [12], where absorption is quenched
and dispersion enhanced so as to give slow light propaga-
tion. In the same frequency window v � v1, the transi-
tions from the ground state to the MF � 22, 21 sublevels
of the excited state are sufficiently off resonance �Dvz,2 �
ve�MF � 21, 22� 2 ve�MF � 0� ¿ ge� so as to give
a positive and relatively frequency-flat background con-
tribution to the ŝ2 and ẑ components of the dielectric
tensor,

e1 � 1 1
4pf1

v1 2 ige 2 v 2
jVj2

v12igm2v

, (10)

ez,2 � 1 1 4px`
z,2 � 1 1

4pfz,2

Dvz,2
. (11)

The oscillator strengths f6,z are proportional to the atomic
density times the square of the dipole moment of the op-
tical transition and differ from each other depending on
the relevant Clebsch-Gordon coefficients. The detunings
Dvz,2 follow from the Zeeman splitting of the atomic
levels, which implies that the background refraction can
be experimentally controlled by tuning the magnetic field;
with 23Na atoms, a splitting Dv2 of about 2p 3 40 MHz
occurs in a reasonable magnetic field of the order of 80 G.
Given the different magnetic moments of metastable and
excited states, the weak dressing field cannot effectively
dress the optical transitions other than the resonant one
between the MF � 0 sublevels.

The threshold velocity (5) for Cherenkov emission at
v1 is determined by the background refractive index (11).
If the velocity is larger than the threshold value, light is
radiated into a mode with nonvanishing k

�1�
� ; in the pres-

ence of EIT, such a radiation will propagate with ultraslow
group velocity without being absorbed. The magnitude
of the group velocity (3) is mainly determined by the dis-
persive properties of EIT while its direction depends on
the background refractive index only. Group velocities
as low as 17 m�sec have been reported in an ultracold
sodium gas [3] and this means that the group cone would
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FIG. 4. Scheme of the 23Na atomic levels involved in the op-
tical process under examination.
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have an extremely narrow shape, practically a cylindrical
one �u ø 1�. From the experimentally determined pa-
rameters of this system [3], the characteristic length j �
hy2

r � hy�2
g turns out to be of the order of 10 mm

and the background susceptibility 4px`
z,2 is of the order

of 1022, i.e., much larger than that usually found in gas
Cherenkov counters [10].

The theory we have developed is based on the assump-
tion of a homogeneous medium. This approximation is
reasonable provided the overall size of the atomic cloud
is much larger than the wavelength of the Cherenkov light
whose detection should be performed within the cloud
itself to avoid reflection effects at the edges of the cloud.
In analogy with what has been done in the case of electro-
optic materials [14], a picture of the group cone can be
taken, exploiting the very large cross section for resonant
two-photon absorption processes in EIT media [15]: the
absorption coefficient experienced by a laser field on reso-
nance with another optical transition starting from the
MF � 0 sublevel of the metastable m state is in fact pro-
portional to the local intensity of the Cherenkov radiation
at v1 which forms the narrow group cone [5]. Since the
interaction of the charge with the atoms of the cloud results
not only in Cherenkov emission but also in other heating
and ionization processes [7], it is necessary to reduce the
importance of such short-range processes by making the
charge travel in a region of space free from atoms. For
the case of an atomic cloud, this can be achieved, e.g., by
using the repulsive potential of a blue-detuned laser so as
to create a sort of “tunnel” through the cloud; a small cylin-
drical hole with a radius of the order of the wavelength does
reduce the yield of the Cherenkov radiation, but does not
affect the qualitative features of the pulse propagating in
the surrounding medium [16]. Unfortunately, the intensity
of the radiation emitted by a single electron is rather low.
For the 23Na parameters and statistically independent elec-
trons, a photon is emitted in the mode under consideration
each 107 electrons. This problem may be overcome by
looking at the radiation generated by a very large number
of electrons at a time [17]: since the radial velocity yr is
much smaller than the charge velocity w, the profile of the
group cone would not be smeared out even if the spatial
extension of the bunch of electrons is much longer than
the wavelength of the emitted light.

In summary, we have developed a general theory for
Cherenkov emission in arbitrary nonisotropic and disper-
sive dielectrics and we have given an analytical expression
for the group cone over which the intensity of the emitted
light is maximum. Unlike in isotropic and nondispersive
media, the group cone is here much narrower than the wave
cone defined by the usual Cherenkov coherence condition
and is orthogonal neither to the phase nor to the group ve-
locity. This conceptual distinction becomes of great physi-
cal relevance in media exhibiting slow light propagation.
As an illustrative example, we consider the realistic case of
a coherently driven ultracold 23Na gas: the geometrical and
dispersive properties of the corresponding dielectric ten-
064801-4
sor are shown to allow an experimental characterization of
the role of the group velocity in the process of Cherenkov
emission.

We thank F. Illuminati, S. de Siena, S. Harris, and G.
Afanasiev for useful discussions. We acknowledge sup-
port by the INFM (Progetto Ricerca Avanzata “photon-
matter”) and the European Community (Contract
No. HPRICT1999-00111).

*Present address: Laboratoire Kastler-Brossel, Ecole Nor-
male Superieure, 24 rue Lhomond, 75231 Paris Cedex 05,
France.
Email address: Iacopo.Carusotto@lkb.ens.fr

[1] M. M. Kash et al., Phys. Rev. Lett. 82, 5229 (1999).
[2] D. Budker, D. F. Kimball, S. M. Rochester, and V. V.

Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).
[3] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,

Nature (London) 397, 594 (1999).
[4] D. F. Phillips et al., Phys. Rev. Lett. 86, 783 (2001); C. Liu,

Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature (London)
409, 490 (2001).

[5] G. S. Agarwal and W. Harshawardhan, Phys. Rev. Lett. 77,
1039 (1996); S. E. Harris and L. V. Hau, ibid. 82, 4611
(1999); H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936
(1996).

[6] I. M. Frank, Nucl. Instrum. Methods Phys. Res., Sect. A
248, 7 (1986), and references therein.

[7] L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon, London, 1960).

[8] This expression for vg corresponds to the ratio of the Poynt-
ing vector S and the energy density u [7].

[9] In the electric dipole emission, a similar distinction is done
between the near zone �kr ø 1� and the radiation zone
�kr ¿ 1�; see, e.g., J. D. Jackson, Classical Electrodynam-
ics (Wiley, New York, 1975), 2nd ed.

[10] J. V. Jelley, Cherenkov Radiation and its Applications
(Pergamon, London, 1958). See also G. Afanasiev et al.,
Physica (Amsterdam) 269B, 95 (1999).

[11] In usual EIT experiments the effect of Doppler broadening
in hot gases is overcome by choosing a dressing field
copropagating with the probe field [12]; unfortunately, the
conical geometry of Cherenkov emission does not allow
for such a choice, so that one is forced to use an ultracold
sample in which Doppler broadening is absent.

[12] E. Arimondo, in Progress in Optics XXXV, edited by
E. Wolf (Elsevier, New York, 1966), p. 257.

[13] J. F. Cornwell, Group Theory in Physics (Academic, Lon-
don, 1994).

[14] D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A.
Kleinman, Phys. Rev. Lett. 53, 1555 (1984).

[15] S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611
(1998).

[16] V. L. Ginsburg and I. M. Frank, Dokl. Akad. Nauk SSSR
56, 699 (1947); L. S. Bogdankevich and B. M. Bolotovskii,
Zh. Eksp. Teor. Fiz. 32, 1421 (1957) [Sov. Phys. JETP 5,
1157 (1957)].

[17] J. Ohkuma, S. Okuda, and K. Tsumori, Phys. Rev. Lett.
66, 1967 (1991).
064801-4


