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The stochastic variational method is used in conjunction with stabilization ideas to compute the low
energy phase shifts and scattering lengths for positronium-atom scattering. Results are obtained for the
Ps-H, Ps-Li", Ps-He, and Ps-Ps systems. The Ps-H scattering lengths are probably accurate to better than
5% and are the most accurate so far computed. The results for Ps-Li* and Ps-Ps scattering represent the
first published scattering lengths for these systems. The positive scattering length for completely spin-
aligned *Ps-Ps scattering, namely 2.95ay, is particularly significant since it demonstrates the feasibility
of forming a stable Bose-Einstein condensate of *Ps atoms.
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One of the most difficult problems in atomic collision
theory is the positronium-atom scattering problem. The
source of the difficulty lies in the fact that both the projec-
tile and the target are composite objects with an internal
structure. This means that the interaction matrix elements
involve multicenter integrals which are difficult and time
consuming to evaluate [1]. Particular sources of concern
are the evaluation of the exchange matrix element involv-
ing the electrons in the target and the electron forming part
of the positronium. An even more formidable problem is
the inclusion of the van der Waals interaction between the
positronium (Ps) projectile and the atomic target. One can
point to very few calculations that have included this ef-
fect, and even then the calculations were restricted to Ps-H
scattering.

In this article, the stochastic variational method [2-5]
is applied to the calculation of Ps-atom scattering for the
Ps-H, Ps-Li*, Ps-He, and Ps-Ps systems. The Ps-H sys-
tem is probably the best known from the theoretical point
of view [6-9]. There have been no scattering calcula-
tions of the Ps-Li* system as such, although there have
been calculations of the alternate e*-Li entrance channel
[10]. The Ps-He system has been studied previously by a
number of authors and at the moment there is a great deal
of variation (a factor of 5) in the threshold cross section
according to the different calculations [11-14] and differ-
ent experiments [15—19]. The present calculation includes
all the physical Ps-helium interactions and to a large ex-
tent resolves most of the theoretical issues surrounding the
Ps-He scattering length. There has been no published cal-
culation of Ps-Ps scattering even though knowledge of the
scattering length is of vital importance to proposals to form
a stable Bose-Einstein condensate (BEC) of spin-aligned
triplet Ps atoms [20,21]. Besides being half comprised of
antimatter, a *Ps BEC would also be unique because it
could be formed at relatively high temperatures (~150 K)
[20,21].

The method as applied is not a traditional scattering
calculation, rather it uses stabilization ideas [6,22—-24] to
extract the phase shifts from the positive energy pseudo-
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continuum that results from the SVM diagonalization of
the Hamiltonian. The SVM uses a random search to opti-
mize the exponents of a set of explicitly correlated Gaus-
sians (ECGs) and has the advantage that evaluation of the
exchange (and other) matrix elements is easily accom-
plished [2-5]

The present calculation scheme is now described. Con-
figuration space is divided into two regions, an inner or
interaction region and a scattering region. In the inner re-
gion, the stochastic variational method (SVM) is used to
define an ECG basis (dimension = K) that gives an ac-
curate solution of the Schrodinger equation for the lowest
energy state. For a system such as Ps-H which supports
a bound state, this amounts to a standard bound state cal-
culation. However, the Ps-He system does not support a
bound state and the procedure must be modified. In this
case the exponents, a; of the Gaussians connecting the
electron and positron to the nucleus are restricted to be
larger than a certain minimum size, say «; > 0.01. This
constrains the electron and positron to be localized reason-
ably close to the nucleus and results in an SVM iteration
procedure that effectively solves the Schrodinger equation
in some sort of box.

Once the inner wave function has been obtained, a set of
ECGs designed to represent positive energy Ps was added
to the basis. First an 8 Gaussian representation of the
Ps ground state was constructed (the energy obtained was
—0.249997 2 hartree). Then a series of ECGs was con-
structed by multiplying the Ps Gaussians with a Gaussian
with the Ps center of mass coordinate as its argument. The
exponents of the center of mass Gaussians, a; were cho-
sen to form an even tempered sequence. The ratio between
adjacent exponents was approximately 1.3:2.0 and the ex-
ponents spanned the range from 1 to 1074, The set of the
basis functions thus constructed is used to describe relative
motion of Ps and the target. For some systems, namely
Ps-H and Ps,, the final ECGs consisted of symmetrized
products of center of mass Gaussians joining two compos-
ite objects (either Ps or H) which were also written as a
linear combination of ECGs, e.g., for Ps-H
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Vol = exp(—aiR)Y] (o r)f! (). (1)

where R is the distance between the Ps and H centers of
mass, ry is the positron coordinate, and the r; (i > 0) are
the set of electron coordinates. The t/fJI-JS (ro,r1) and l/f]f] (rp)
are the Gaussians used in the expansion of the Ps and H
ground states.

The inner and outer basis functions were then checked
for linear dependence and ECGs having large overlaps with
existing basis functions were excluded, giving a final ba-
sis of dimension M. The basis was diagonalized by stan-
dard techniques and the phase shift information extracted.
The essential idea is based on the often made observa-
tion [6,22—24] that the positive energy pseudostates give a
reasonable representation of the scattering function over a
restricted radial range.

Two different approaches were used to determine the
phase shifts. In the first, the overlap integral of the
Ps ground state with the positive energy pseudostate
is computed at a succession of values of R, the Ps
center of mass coordinate, i.e., the overlap between
S[(ro + r1)/2 — R]¢ps(rg,r;) and d(rg,r;) was com-
puted. Then a least squares fit over R € [10,25] ag to
Bsin(kR + 8g) was used to extract the phase shift.

In the second, the positron-nucleus correlation function
defined by

Cx) = 47Tx2f drid’ry 8ry — x)|P(ro,r)* (2)

is computed for a succession of x values and fitted to
Bsin%(kx + &) over x € [10,25] ay.

The two approaches of extracting the phase shifts gen-
erally gave phase shifts that agreed to about 0.01 rad. A
useful diagnostic check was to compare the magnitude of
the electron-nucleus and positron-nucleus correlation func-
tions over the radial values of interest. They generally
agreed to better than 0.1%

The calculations on Ps-H and Ps-Ps scattering were fully
ab initio calculations. The fixed core stochastic variational
method (FCSVM) was used for the Ps-Li*™ and Ps-He sys-
tems. The FCSVM replaces the full Hamiltonian for the
N, electrons and a positron by a model Hamiltonian with
the core electrons removed, viz

1 1
H = _EV% - EV% — Vair(ro) + Vair(r1) + V,1(ro)

1 N
+ Vpi(r) + Vee(r) — o + Vyolry,rg) + AP.
3)

In this expression, r; refers to the electron coordinate,
while ry refers to the positron coordinate. The direct po-
tential (Vy;,) for the core is taken from a Hartree-Fock wave
function and is the same (although opposite in sign) for the
electron and the positron. The exchange potential (Vexc)
between the scattering electron and the Hartree-Fock core
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was computed exactly. The polarization potential V) is
defined with the functional form

_a48 *(r)
2r4

The factor ¢ is the static dipole polarizability of the core

and g%(r) is a cutoff function. The same cutoff function

was adopted for both the positron and electrons. Its form
was chosen as

g*(r) = 1 — exp(=r°/p°), )
The two-body

Vpi(r) = “)

where p is an adjustable parameter.
polarization potential (V) is defined as

Vpa(ro,r1) = % (ro - r1)g(ro)g(r1). (6)
0ri

Inclusion of the two-body potential ensures that the
polarization interaction reduces to a van der Waals type
interaction when the Ps is at large distances from the
nucleus. The Li* core polarization potential was tuned
to the spectrum of neutral lithium and was defined with
ag = 0.1925a(3) and p = 1.40ap [5]. The polarization
potential (ay = 1.383a(3), p = 2.40aq) for helium was
defined by adding it to a static-exchange calculation of
e -He scattering and adjusting p until the scattering
length agreed with the known value of 1.2aq [26].
The operator

AP = Z/\|¢i><¢i|, (7)
i=

is an orthogonalizing pseudopotential that acts to produce
wave functions orthogonal to the occupied core orbitals
when A [5,27] is a large positive number. It (A) was set to
10° hartree for the present calculations.

The Ps-H system has two different electron spin states
with only the singlet electron spin configuration having a
bound state (the bound PsH ground state). For the spin-
singlet case, the PsH inner wave function had K = 450
with an energy of —0.789 190 hartree. The triplet case
which does not have a bound state had K = 350. The final
dimensions were M = 1083 and M = 968 for the singlet
and triplet cases, respectively.

Figure 1 shows the phase shifts for both triplet and sin-
glet Ps-H scattering. Also shown in Fig. 1 is an effective
range fit to the phase shift using the expression

tan(8g) = —Ak, (8)

where A is the scattering length. The phase shifts have
minor fluctuatation about the effective range fit since the
positive energy pseudostates do not give an exact repre-
sentation of the scattering wave function despite giving an
approximate representation over a limited radial range.
The SVM scattering lengths of 4.3a and 2.2a are close
to converged and broadly compatible with the 25 year old
estimates of Drachman and Houston [6]. (They deduced a
singlet scattering length of 4.5a¢ from a stabilization cal-
culation with corrections to compensate for their relatively
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FIG. 1. The s-wave phase shifts for Ps-H scattering as a func-
tion of k (in aq 1). Phase shifts (modulo 77) for both the singlet
spin configuration and triplet configuration are shown. The lines
represent effective range fits to the phase shifts.

small basis size). The most recent Kohn variational esti-
mate of 3.5a¢ [9] is susceptible to systematic errors since
a severely truncated partial wave expansion was used to
evaluate some of the matrix elements [9].

The scattering calculation for Ps-Li™ (K = 170, M =
305) was based upon an existing wave function for the
Ps-Li"™ ground state [5,28]. The phase shifts shown in
Fig. 2 were not computed by fitting to sin(kR + §). In-
stead the fit was made to an asymptotic function that in-
cluded the polarization of the Ps atom due to the field of the
residual Li* ion. The scattering length of 12.9q is 25%
larger than the scattering length of 10.14a derived from the
Ps-Li" binding energy [5,28] using effective range theory.

The Ps-He scattering calculations (K = 240, M = 469)
were done for two different core potentials and the phase
shifts are displayed in Fig. 3. In the first calculation, the
core-polarization potentials were omitted. This calcula-
tion allows for direct and exchange interaction of the elec-
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FIG. 2. The s-wave phase shifts for Ps-Li* scattering as a
function of k£ (in ag 1). The solid line represents an effective
range fit [with an additional 7 a4k?/3 term added to Eq. (8)] to
the phase shift.
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tron and positron with the He atom, but does not allow for
any distortion of the He atom during the scattering event.
The scattering length for this calculation was 1.82ay, in
agreement with the 22 state R-matrix calculation which
has the same physical content [12]. Inclusion of the po-
larization interactions leads to a modest reduction in the
magnitude of the phase shifts and therefore in the cross
section. Although the polarization potential was derived
semiempirically, the same FCSVM approach was used to
compute the binding energies of PsHe™ [25] and PsLi™
[5,28] ground states, giving energies in very good agree-
ment with the ab initio calculations [5,25,28]. The present
calculation with polarization uses a Hamiltonian that is
more realistic than any previously used, and the thresh-
old cross section 10.47ag, strongly favors the larger es-
timates of the threshold cross section, namely 8.4 = 0.9
[17], 9.0 [19], and 13 = 47Ta% [18]. A recent smaller es-
timate of the cross section, 2.6 * 0.57aj at 1 eV energy
[16] by the Michigan group is effectively excluded. Al-
though there is some uncertainty in the precise value of
the scattering length, using p = 1.50aq (derived from the
e -helium scattering length) would give a threshold cross
section, 8.67761(2), that was still consistent with the larger
measurements. The present calculations resolve current
controversy [11,12,16,18] about the size of Ps-He scatter-
ing length.

Phase shifts for the Ps-Ps system were obtained for
two spin configurations. They were for the configura-
tion with both electrons and both positrons in a singlet
state (K = 350,M = 1026), and the >Ps->Ps configura-
tion (K = 350, M = 893) with all spins aligned. The
'(2¢7)-'(2¢™) configuration has a bound state (the Ps,
molecule) and the binding energy with the inner basis was
0.016003 4 hartree (best binding energy = 0.016 0037
[3]). Both sets of phase shifts shown in Fig. 4 vary
smoothly with energy and the derived scattering lengths
have relatively small uncertainties. The present *Ps-*Ps
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FIG. 3. The Ps-He s-wave phase shifts for model potentials

with and without polarization potentials as a function of k (in
ag"). The lines show effective range fits to the phase shifts.
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FIG. 4. The s-wave phase shifts (modulo ) for

Ps-Ps [!(2e7),'(2¢™)] and the spin aligned 3Ps-Ps scat-
tering as a function of &k (in ag '). The lines are effective range
fits to the phase shifts.

scattering length is close to the back of the envelope
estimate of the *Ps->Ps scattering length used by Platzman
and Mills [20], namely ~2aop, in their analysis of the
feasibility of making a BEC out of Ps atoms. The positive
value of the ?Ps-3Ps scattering length, namely 2.95aq,
demonstrates the possibility of forming a stable BEC of
3Ps atoms.

Most of the scattering lengths listed in Table I are close
to converged. Variations in the size of the inner wave func-
tion basis for all systems resulted in only minor changes
in the derived scattering lengths. It is estimated that the
uncertainties in the derived scattering lengths are in the
2% —5% range. While the present application of the SVM
has been used to solve some previously intractable prob-
lems in Ps scattering, the SVM can also be sensibly applied
to investigate other difficult scattering problems with com-
posite particles, e.g., meson-nucleon or nucleon-nucleon
scattering in constituent quark models or exciton-exciton
scattering in semiconductors.
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