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We compare the shell-model results for realistic interactions with those obtained for various ensembles
of random matrix elements. We show that, although the quantum numbers of the ground states in the
even-even nuclei have a high probability (~60%) to be J™T = 070, the overlap of those states with
the realistic wave functions is very small in average. The transition probabilities B(E2) predicted with
random interactions are also too small. The presence of the regular pairing is shown to be a significant
element of realistic physics not reproduced by random interactions.
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The interplay of regular and chaotic elements in quan-
tum many-body dynamics was extensively studied in the
framework of random matrix theory [1,2] and in realistic
models of atoms, nuclei, condensed matter, and quantum
fields (see, for example, [3—6]). The embedded Hamil-
tonian ensembles and, in particular, the two-body random
Hamiltonian ensembles [1,7-9] are especially relevant for
these studies. The existence in finite systems of exact
conservation laws, such as angular momentum, parity, or
isospin, raises new questions, for instance, how quantum
chaos is influenced by these indestructible symmetries, and
what the correlations are (if any) between the blocks of
states with different exact quantum numbers governed by
the same Hamiltonian. Such questions are important for
understanding the nature of observed regularities in actual
many-body spectra.

The nuclear shell model with the effective two-body
forces in a restricted Hilbert space is the best available
theoretical tool for calculating the properties of the low-
lying states. Recently [9—12], the low-lying spectra were
studied with the shell-model techniques but using, instead
of effective interactions, randomly generated (but rota-
tionally invariant) two-body matrix elements. Some of
the results resemble the pattern of actual nuclear spectra.
One particularly interesting observation was that of pre-
dominance of spin J = 0 in the ground state in spite of
the low statistical weight of states with J = 0 in Hilbert
space. This result is robust and insensitive to precise sta-
tistical properties of the random interaction in the fermion
shell model [13] or in the interacting boson approxima-
tion [14,15]. A simple mechanism of random coupling
of individual particle spins was suggested in Ref. [12] to
explain the preponderance of J = 0 (and, in some cases,
J = Jmax [12,14]) in the ground state. In average, the yrast
line in a randomly interacting fermionic system acquires a
random sign of the effective moment of inertia which leads
to the large probabilities of the edge values of the total spin.

In this Letter, we study the wave functions resulting
from the shell-model calculations with realistic and ran-
dom interactions. We show that the overlap of the 0"
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ground-state (gs) wave functions generated by random in-
teractions with those obtained for realistic interactions is
very small. Also, the associated transition probabilities
B(E2) to the 2 state are very small. The implication is
that the order which is present in actual nuclear states is
almost entirely due to the coherent (nonrandom) aspects of
the nuclear Hamiltonian. We need to stress that here we
look for the signatures of the coherent phenomena not in
the spin ordering which might be a consequence of geo-
metrical constraints, but in the collectivity of the wave
functions. As shown by many authors, the highly excited
states in real systems are very complex and in many as-
pects similar to the eigenfunctions of a random Hamilto-
nian. However, the degree of complexity is systematically
evolving along the spectrum [4] so that the low-lying states
are much more regular.

The experience with the shell-model calculations
demonstrated that there exists a rather well determined set
of single-particle energies and two-body interaction matrix
elements which, being processed through the machinery
of the large scale shell-model diagonalization, lead to a
good description of the low-lying spectra in agreement
with data [16]. As a generic system we take that of eight
particles in the sd shell, the case corresponding to the
well studied >*Mg nucleus. The geometry of the system
is much richer than that of the schematic single- j model
studied in Ref. [12]; it includes also isospin variables.
This allows us to draw some conclusions concerning
actual nuclear structure. In the sd model space, there
are 63 independent matrix elements under constraints of
rotational and isospin invariance. We use two interactions,
one from Ref. [16] and SDPOTA from Ref. [17], denoted
below as (W) and (P), respectively. Being based on dif-
ferent approaches [a fit of individual matrix elements (W)
and a fit of a potential (P)], these sets agree in predicting
the ground state with quantum numbers J77T = 0*0. The
ground-state wave functions for the two interaction sets
overlap by 98%. Our conclusions are the same for both
realistic interactions, and the figures below will show the
results for (W).
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Earlier it was suggested [10] that the wave functions
generated by the random interactions carry significant pair-
ing correlations. Having this conjecture in mind, four
models of random interactions were considered: (a) de-
generate single-particle energies 0ds;», 151/2,0d3/5 (set to
zero); all 63 two-body matrix elements generated as ran-
dom variables uniformly distributed in the interval [—1,1]
(in this case, the energy scale is arbitrary); (b) single-
particle energies taken from the realistic interaction, W
or P, while 63 two-body matrix elements were uniformly
generated in the interval (a — s,a + s), where a is the
average of the magnitude of the matrix elements in the in-
teraction (W or P), and s = V3 o; o is the variance of
the matrix elements in the corresponding realistic inter-
action; the values of ¢ and s are —0.818 and 3.12 MeV,
respectively; (c) the isospin-invariant pairing, JT = 01,
two-body matrix elements were kept from the realistic in-
teractions, whereas the remaining matrix elements were
generated as in (b) with the values of @ and s equal to
—0.616 and 3.03 MeV, respectively; (d) only six pairing,
JT = 01, two-body matrix elements were randomly gen-
erated in the interval [—1, 1], whereas all other matrix
elements and all single-particle energies were set to 0;
with respect to the energy value, this case can be compared
to (a).

The results for 1000 realizations for each model are
combined in Table I. The ground-state energy (relative to
180 and corrected for Coulomb energy as in [16]) with
both realistic interactions is —87.1 MeV. The average
ground-state energy in cases (b) and (c) is of the same or-
der as in realistic calculations being mainly determined by
the single-particle energies. The gain of 2.9 MeV in ver-
sion (c) compared to (b) is related to the realistic pairing.
The loss of 5 MeV in (b) compared to the full realistic in-
teraction is due to pairing plus multipole-multipole corre-
lations present in the realistic case. The average positions
of the ground state in purely random versions (a) and (d)
are determined by the widths of the Gaussian many-body
level densities known for many-body systems with a ran-
dom two-body interaction [1,4].

For all random ensembles, the predominance of the
ground states with J = 0 is seen clearly. In the fully ran-

dom case (a), the result is in agreement with what was
observed in the pioneering paper [9], confirmed in later
studies, and attributed mainly to the random geometrical
coupling [12]. The presence of regular pairing, case (c),
increases the percentage of the ground states with J = 0.
The strongest effect is observed for the case (d) when
the off-diagonal pair transfer matrix elements make quan-
tum numbers J = T = 0 preferable for an even number
of pairs, as in the case under study, while the competing
influence of incoherent interactions is absent.

The average overlaps (W |R)2 = |3, CE (W)CE (R)|?
of the ground-state wave function for the W and P in-
teractions with the 0" ground states of the four different
models of the random interaction are presented, along with
their variances, in Table I. The average overlap is small
in all cases; in particular, in the case (a), 2.0%. This is
in agreement with the conclusion drawn in Ref. [12] for
a single-j level model that the ground-state wave func-
tion carries very little effect of pairing correlations. How-
ever, this overlap is still greater than one would expect in
the case of extreme chaoticity when the components C}
of a generic wave function |a) are uniformly distributed
over the unit sphere in space of the corresponding dimen-
sion N and |C|?> = 1/N which gives rise to the so-called
N scaling [18,19]. In our case, the dimension for the
J =0,T = Ostates is N = 325 which would give the av-
erage chaotic overlap factor 0.3%.

The average overlap is even greater in other models.
The maximum of 11% is reached in model (c) because
of the combined action of two effects. First, the pres-
ence of realistic pairing lowers the energy of a state with
paired particles. On the other hand, basis states with large
seniority (the number of unpaired particles) are now ef-
fectively removed from contributing considerably to the
ground-state wave functions. This makes the effective di-
mension N smaller than the nominal one. This phenome-
non was clearly seen for a simple N = 3 single-j case
in Ref. [12]. The stabilizing presence of the mean-field
orbitals, model (b), also increases the overlap with the re-
alistic ground-state wave function. The models (a) and
(d) have overlaps which are strongly peaked at small val-
ues. The model (c) leads to a more smooth and uniform

TABLE I. Results for models (a), (b), (c), and (d) as described in the text.

(a) (b) (©) (d)

% of JT = 00 gs 59.1 49.3 67.8 922

(Ego) (MeV) —13.8 —82.1 —85.0 -3.6
W) Average (W | R)? 0.020 0.053 0.106 0.052
Variance (W | R)? 0.056 0.094 0.137 0.096
(P) Average (P | R)? 0.019 0.054 0.113 0.061
Variance (P | R)? 0.051 0.088 0.137 0.113

B(E2),, 7.0 9.9 14.3 6.2

O B(E2) 105 119 155 50

B(E2)max 59.2 59.4 68.0 22.1
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overlap distribution. This again shows that the realistic
mean-field orbitals (given by their single-particle energies)
have a strong influence on the overlap. The overlap is more
enhanced by realistic pairing (c), but it is still far from unity
since other coherent correlations are missing.

The complexity of the eigenfunctions in a given ba-
sis |k) can be discussed in terms of information entropy
[4], So = — 24 |CF1?In|CF|%. For a given set of single-
particle levels, the behavior of entropy in the shell-model
basis is mainly determined by the two-body character of in-
teraction, its average strength, and combinatorial growth of
the many-body level density [4,20,21]. Therefore the evo-
lution of the delocalization length exp(S,) along the spec-
trum is qualitatively similar for the realistic case and for
the random interaction; see Fig. 1 where the comparison
is shown with the case (a). In the middle of the spectrum,
both entropies are close to the limit 0.48N = 156 one
obtains using the Gaussian orthogonal ensemble (GOE)
[4] of random matrices. However, in the realistic case
the value of entropy is systematically lower compared to
the random interaction. At the same time, the eigenstates
of the random interaction are on the GOE limit of com-
plexity with respect to the basis of W eigenstates (inset
of Fig. 1). If one calculates the overlap in our model
(a) using only the absolute values of the amplitudes (i.e.,
[, 1 CEW)CE (R) 1), the result is 0.14, ie., 7 times
larger than the one listed in Table I (0.02). This shows
that not only the distribution of amplitudes is important,
but their relative signs decide the collectivity of a state.

The lowest states for the random interaction have re-
duced entropy. In the mixing process of simple configura-
tions, the coherent repulsion creates the energy gap above
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FIG. 1. The average information entropy in the shell-model

basis for J”T = 070 states over the ensemble (a) of random
interactions (solid line), for the realistic interaction W (data,
points, and smoothing with a Savitsky-Golay filter [22]), and
the GOE limit (horizontal line). The inset shows the entropy of
states for the random interaction in the basis of the eigenstates
for the W interaction. « represents the eigenstate number or-
dered by energy.
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the ground state which suppresses the further mixing. But
the predominantly chaotic nature of these states is con-
firmed by the weakness of multipole-multipole correla-
tions. As an illustration, results for the reduced quadrupole
transition probabilities B(E2) from the lowest 27 state to
the ground 0™ state are shown at the end of Table I (units
are e’ fm*) and in Fig. 2. The B(E2) values from the ran-
dom interactions are divided by the value of 69.5 e fm*
obtained [16] from the (W) interaction. Typically, the
B(E?2) value is by more than an order of magnitude weaker
than obtained with the realistic interactions. Moreover, the
maximum B(E2) values out of 1000 samples for each of
the four models (a)—(d) (last line in Table I) are smaller
than the value obtained for the realistic interaction calcula-
tion. One can conclude that this particularly strong collec-
tive feature of the realistic interaction has less than 0.1%
probability of being reproduced by any of the four random
interaction models. In Ref. [9] a fractional collectivity f
was calculated for a “phonon” operator (selectively maxi-
mized for each individual member of the ensemble), and a
strong average transition between the first 2* state and the
0" gs was found: 0.52 * 0.27. We calculated a similar
fraction using everywhere the fixed quadrupole operator,
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FIG. 2. Distribution of B(E2)z/B(E2)y values from the first
27%0 state to the 0*0 ground state for models (a)—(d), where

B(E2)g are the values obtained from the random interactions
and B(E2)y is the value from the W interaction.
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and we found that in our model (a) its average value is
bounded from above by the value of 0.23, significantly
smaller than the f = 0.52 found in Ref. [9]. Additionally,
we found the sum rule in the denominator to be by a factor
of 3 smaller for the random ensemble as compared with
the realistic case. The question whether the collectivity
of the gs, defined in terms of the transition probabilities
corresponding to the observable that is known to describe
collective effects, such as B(E?2), is realistic or not, should
be answered negatively. For example, in our model (a) the
average value of B(E2)is 7 e? fm*, the standard deviation
is 10.5, (see the o p(g2) line in Table I for the other models),
while the realistic value of 69.5 is six standard deviations
away from the average value.

The distribution of the B(E2) values for model (a) is
close to the Porter-Thomas as one expected for matrix ele-
ments of one-body operators between two complicated
states [1,18,19]; the 2" state is even less ordered than
the ground state. A trace of collective strength appears
in the model (c). In this respect, one can recall that low-
lying collective vibrations, in contrast to high-lying giant
resonances that are less sensitive to the residual inter-
actions, emerge only in a superfluid Fermi system. In
a normal Fermi system, the low-lying vibrations are not
shifted outside the particle-hole continuum and have only
a single-particle strength [23]. It means that again we see
the pronounced pairing effects only if the residual interac-
tion explicitly contains the pairing part. In model (d), the
multipole-multipole correlations generated by the higher
components in the pair channel are absent, while the pair-
ing with / = 0 alone does not allow for large mixing be-
tween the single-particle configurations. The sharp cutoff
observed in this model is related to the maximum which
can be obtained with pure j — j configurations, e.g., about
19 €% fm* for (ds2)*.

In conclusion, with the aid of random rotationally
and isospin-invariant two-body interactions in the sd
shell model, we have studied the main features of the
structure of the ground and low-lying eigenstates as well
as complexity of highly excited states. We confirm the
strong enhancement of the probability of the quantum
numbers J7T = 070 for the ground states. However, the
resulting ground-state wave functions have only a weak
overlap with the realistic ground states that depends on
the specific model of randomness. Although the presence
of the pairing noticeably increases the percentage of
J™T = 070 ground states generated by random interac-
tions, its contribution to the collectivity of these states is
small. The quadrupole transitions between the lowest 2™
states and the ground states also do not reveal significant
collectivity, in contrast with the results of any realistic
interaction. In the eigenbasis of the realistic interaction,
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the states generated by the random interaction are on
the GOE limit of chaoticity. Small hints of coherent
components in the low-lying wave functions generated
presumably by the off-diagonal pairing matrix elements
and observed also in the earlier studies [12] require a more
detail analysis. Both random and realistic interactions
can generate regular geometric patterns for the low-lying
spectra, but it is only the latter that are relevant for those
actually found in nuclear physics.
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