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We analyze the problem of fluid flow in a bifurcating structure containing random blockages that
can be removed by fluid pressure. We introduce an asymmetric tree model and find that the predicted
pressure-volume relation is connected to the distribution P�n� of the generation number n of the tree’s
terminal segments. We use this relation to explore the branching structure of the lung by analyzing
experimental pressure-volume data from dog lungs. The P�n� extracted from the data using the model
agrees well with experimental data on the branching structure. We can thus obtain information about the
asymmetric structure of the lung from macroscopic, noninvasive pressure-volume measurements.
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The problem of fluid flow through bifurcating structures
is of considerable current interest [1–7]. However, the case
when the structure contains random blockages that can be
removed by the fluid pressure has been studied only for
the simple case of symmetric branching [7,8]. Here we ad-
dress the problem of forcing fluid (liquid or gas) through
asymmetrically branched media in the presence of random
closures. Such systems are often encountered during fluid
flow in an organ system, such as circulation of blood or
flow of air in the lung, where the pathways can be blocked,
leading to potentially lethal situations [9,10]. Here we
develop a model of the pressure-volume �P-V � curve of
the lung, and obtain a surprising connection between lung
inflation and branching structure. Specifically, fitting the
model to experimental pressure-volume data provides in-
formation about a key microscopic property of the airway
tree, namely, the distribution of the generation numbers of
the tree’s terminal segments. Since experiments measur-
ing P-V curves of an inflating lung are noninvasive, this
method provides a way to study “microscopic” branching
structures from “macroscopic” P-V data without the use
of invasive techniques.

During expiration, peripheral airways in a diseased lung
tend to collapse, blocking the flow of air, if the surface
tension of the lining fluid is abnormally high [11]. We
assume that the lung is completely degassed and all the
airways are blocked at the beginning of the inspiratory
cycle. These blockages can be removed during inflation
if pressure P reaches the critical opening threshold of the
segment [12,13]; P is slowly increased until all closed
segments open.

Since the airways are arranged in a treelike branching
structure, the opening of one segment is not possible un-
til all segments connecting it to the root of the tree are
open. If the threshold pressure of a daughter segment is
smaller than that of its parent, the daughter opens simul-
taneously with the parent. This mechanism also applies to
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subsequent generations, leading to avalanches of opening
of airways [14].

The process of airway opening via avalanches has been
studied for symmetric binary trees [7,8,14,15]. The vol-
ume of inhaled air during inspiration follows a simple
power law, and the numerical value of the exponent was
shown to be equal to the generation number n0 of the ter-
minal segments [8],

V ~ Pn0 . (1)

The real lung is asymmetric with many branches miss-
ing. Hence, to test the departures from the simple power
law behavior of Eq. (1), we experimentally determine the
P-V curves of two isolated dog lung lobes, labeled A and
B. We inflate the lobes through the main bronchus, from
the collapsed state to total lobe capacity, at an inflation rate
such that the time to regain equilibrium after an airway
opens is negligible compared to the total time of inflation.
The measured P-V curves are shown in Fig. 1.

Over 90% of the air volume recruited into a lung is
contained in the terminal alveoli (air sacs) [16]. Assuming
that all alveoli are identical and inelastic, the volume of air
at any pressure is proportional to the number of ventilated
alveoli. The alveolar elasticity is significant near the end
of the inspiratory cycle, after most air sacs have opened
[17]. However, we are interested in the air intake due to
the avalanche process, not the elastic expansion, and so
we concentrate on the region of the P-V curves in Fig. 1
below the points of inflection, where the elasticity of the
air sacs can be ignored. The curves are normalized such
that both the P and V at the point of inflection are unity
as shown in Fig. 2. Examining the P-V curve on a log-log
scale (Figs. 2c and 2d) we can see that a single power law
[Eq. (1)] is not sufficient to describe the data.

Next we develop a model to account for the asymmet-
ric branching of the airway tree. Each air sac is labeled
with an index k going from 1 to N (the total number of
© 2001 The American Physical Society 058102-1
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FIG. 1. Experimentally determined P-V curves of two isolated
dog lung lobes A and B, obtained during inflation from collapsed
state to total lobe capacity, in an inflation time of 120 s. Pressure
and airflow are measured using a Valydine MP-45 transducer and
a screen pneumotachometer attached to another Validyne MP-45
transducer, respectively.

air sacs in the lung). The state of being open or closed for
each air sac, k, at pressure P is then described by a vari-
able sk which is 1�N (if the air sac is open) or 0 (if it is
closed). We normalize sk such that the sum of all sk is
unity when all air sacs are open. We define the depth, nk ,
for air sac k, as the number of generations between the air
sac and the root of the tree, which is equal to the number
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FIG. 2. Pressure-volume data of dog lung lobes, normalized
with the inflection point of the curves in Fig. 1 set to �1, 1�.
The open circles correspond to measured data points, while
the solid lines show the curves’ fit using Eq. (5). (a) and (b)
correspond to the data obtained from two distinct lobes A and B.
(c) and (d) demonstrate the corresponding fits in a log-log plot,
emphasizing the region of small pressures where the small-n
part of the distribution P�n� is dominant.
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of blockages that have to be removed to open all segments
before the air sac k can be ventilated. The variable sk is
dependent upon the threshold pressures of all the segments
along this path. Each segment along the path is denoted
by a pair of indices �j, k�, where the index k identifies the
air sac k it connects and the former index j describes the
number of generations separating the segment from the air
sac �j � 1, . . . , nk � [18]. A segment �j, k� is open only
if its threshold pressure, Tjk , is less than the pressure P.
The threshold pressure Tjk of all segments, independent
of generation, is drawn from a uniform distribution be-
tween 0 and 1 [15,19], a threshold pressure of 1 being the
pressure at the inflection point. This amounts to saying
that all air sacs are open when P reaches the inflection
point [20]. Since the air sac k is open only if all segments
j � 1, . . . , nk are open, sk is given by

sk �
1
N

nkY
j�1

Q�P 2 Tjk� , (2)

where Q�x� is the unit step function.
To compare our results with experimental data, it is

necessary to average over all configurations of threshold
pressures �Tjk�. The volume, V �P�, contained in the lung
at pressure P is thus given by the averaged count of all
open air sacs,

V �P� �
NX

k�1

�sk� , (3)

where �· · ·� represents an average over all configurations of
threshold pressures �Tjk�. Using Eq. (2), we obtain

�sk� �
1
N

nkY
j�1

Z 1

0
dTjk Q�P 2 Tjk� �

Pnk

N
. (4)

Equation (4) allows us to express �sk� in terms of the
number of segments along the path from air sac k to the
root of the tree. Thus the branches which are not along
this path do not affect the calculation of the average state
of air sac k. Hence the tree is effectively partitioned into
a set of N unbranched pipes. Finally we obtain the aver-
aged volume as a function of inspiratory pressure by using
Eqs. (3) and (4),

V �P� �
NX

k�1

Pnk

N
�

X
n

P�n�Pn, (5)

where P�n� is the fraction of air sacs with depth n, i.e., the
distribution of generation number of the terminal segments.

The expression Eq. (5) for the volume, V�P�, is a poly-
nomial containing different powers of P, unlike the result
for a symmetric tree in Eq. (1) where a unique exponent
corresponds to the single depth n0. The result of Eq. (1)
can be recovered from Eq. (5) by using P�n� � dn,n0 . The
degree of asymmetry is thus manifested in the width of the
distribution P�n�. We note that Eq. (5) combines the ef-
fects of the tree structure, as characterized by the depth
distribution P�n�, and the dynamics, characterized by Pn.

We fit the experimental data with polynomials of order
48, which is the known maximum depth in a dog lung [16].
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The coefficients of the polynomial are constrained such
that P�n� $ 0, for all 0 # n # 48, and

P
P�n� � 1. The

large number of coefficients makes simple regression ex-
tremely unstable, and we use an additive diagonal term in
the coefficient matrix to regularize the results. The raw
fit thus obtained is then fine-tuned by randomly updating
each coefficient by a small amount and recalculating the
fitting errors simultaneously in the normal and logarithmic
scales, to ensure the accuracy of the coefficients for small
n. The fitted curves are displayed, both on linear (Figs. 2a
and 2b) and log-log scales (Figs. 2c and 2d).

The distributions P�n� thus obtained (Fig. 3) have two
distinct regions, a narrow peak for n , 5 and a broad
distribution for 15 , n , 40. The terms in the first region
contribute to the P-V curve at small P when very few air
sacs are ventilated (Figs. 2c and 2d). The second part of
the distribution has two main peaks in the region 22 ,

n , 30.
We compare P�n� to a known model for the airway tree

structure, the Horsfield model [16] which is an asymmetric
self-similar description of averaged experimental data ob-
tained by physical measurements on a polymer cast of the
airway tree. The small-n part of the distribution �n , 5�
that we obtain from our data does not correspond to the
branching structure of the tree since the Horsfield model
does not have terminals with depths n , 13 (Fig. 3). We
attribute the existence of the small-n part of P�n� to the
airway wall elasticity and the volume of air contained in
the airways before any air sacs open. The first few seg-
ments of the airway tree are held open by cartilaginous
rings, and the expansion of these segments at low P also
contributes to the small-n part of P�n�. We ignore this
region when focusing on the branching structure and nor-
malize the Horsfield model to only the area under the sec-
ond part of the distribution. This normalized distribution
obtained using the Horsfield model is shown as a solid line
in Fig. 3.

The Horsfield distribution corresponds in shape and po-
sition with the P�n� obtained by fitting the P-V data. We
are also able to recover the two main peaks at approxi-
mately their correct positions. However, the Horsfield
model is just a simple and idealized description of the dog
lung. In contrast, with our approach we can also identify
the variation in structure among specific samples as can be
seen in the differences between the distributions for lobes
A and B in Fig. 3.

The estimated distributions fall off faster than the Hors-
field model in the region of higher n due, we believe, to
an underestimation of the maximum threshold pressure,
i.e., the pressure at which all airways are opened. Our
assumption that the maximum threshold pressure of the
segments correspond to the pressure at the point of inflec-
tion is true when the distribution of threshold pressures is
uniform and generation independent [20]. However, if the
threshold pressures are generation dependent, the point of
inflection underestimates the maximum threshold pressure
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FIG. 3. Distributions of air sac depths, P�n�, obtained by fit-
ting the P-V data for two dog lung lobes A and B, shown in
(a) and (b), respectively, using Eq. (5). The solid lines show the
distribution from the experimental data of the Horsfield model,
normalized to the area under the part of the distribution resulting
from the tree branching structure �15 , n , 40�.

[15,21]. To estimate the effect of generation dependence,
we simulated inflation of randomly branched trees using
a simple generation dependent threshold pressure distribu-
tion with overlapping domains. We found that the inflec-
tion point shifts to a pressure smaller than the maximum
threshold pressure, independent of the exact distribution
or the degree of randomness in branching. We thus ignore
a region of the P-V curve where the dynamic process of
airway opening is still active. The high pressure in this
region would allow a more significant contribution from
the opening of the deeper air sacs [Eq. (5)], which we are
unable to probe accurately. However, in real lungs, these
air sacs �n . 30� are few in number (Fig. 3) and do not
contribute significantly to the shape of the P-V curve.

The elasticity of the air sacs can also affect the ob-
tained distribution P�n�. The elastic volume of each air
sac VE is described by VE�P� � a 2 be2gP , where a,
b, and g are parameters determined by fitting experimen-
tal data [22]. We expand VE�P� �

P`
m�0 CmPm, where

Cm are functions of a, b, and g. The measured volume is
now given by the product of the fraction of open air sacs,P

n P�n�Pn, and the elastic volume of each air sac, VE .
Equation (5) is then replaced by the expression V �P� �P`

n�1 G�n�Pn, where Gn �
Pn21

m�0 CmP�n 2 m�. Thus
058102-3



VOLUME 87, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 30 JULY 2001
the coefficients of expansion Gn of the P-V relationship
are a convolution of the relative frequencies of terminal
generation numbers P�n� and the coefficients of expan-
sion of the elastic term Cm. Using literature values of a,
b, and g [22], we find that the effect of elasticity on the
estimated structure is minimal.

In summary, in this paper we introduce a statistical me-
chanical model of fluid flow through a bifurcating structure
in the presence of random blockages that are removed by
fluid pressure. When applied to the P-V curve of the lung,
the model allows us to estimate the terminal structure of the
airway tree from global noninvasive measurements made
at the top of the tree. We note that conventionally, the
P-V curve has been interpreted as a measure of the elas-
tic properties of the lung tissue. Here we take advantage
of the fact that fluid blockages have a profound influence
on the characteristics of the P-V curve which allows us
to extract structure from data. Since the estimated struc-
ture compares favorably to available morphological data,
our approach should be useful in clinical situations as well
as in developmental studies. This approach should also
be applicable to other asymmetrically branched biological
and physical systems.
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