
VOLUME 87, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 30 JULY 2001

057001-1
Interband Proximity Effect and Nodes of Superconducting Gap in Sr2RuO4
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The power-law temperature dependences of the specific heat, the nuclear relaxation rate, and the
thermal conductivity suggest the presence of line nodes in the superconducting gap of Sr2RuO4. These
recent experimental observations contradict the scenario of a nodeless �kx 1 iky�-type superconducting
order parameter. We propose that interaction of superconducting order parameters on different sheets of
the Fermi surface is a key to understanding the above discrepancy. A full gap exists in the active band,
which drives the superconducting instability, while line nodes develop in passive bands by the interband
proximity effect.
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The layered perovskite Sr2RuO4 with Tc � 1.5 K [1]
is an example of an unconventional superconductor with
non-s-wave Cooper pairing [2]. The theoretical proposal
[3–5] of a spin-triplet p-wave order parameter Dab�k� �
�isysz�abd�k�, d�k� ~ �kx 1 iky� is supported by
experimental observations of a temperature independent
Knight shift for H � c [6] and an increased muon spin
relaxation below Tc [7]. Such an axial gap function has
a nonvanishing amplitude on the cylindrical quasi-two-
dimensional Fermi surface of Sr2RuO4 [8–10]. This
property favors the axial state as a natural choice in a
weak-coupling theory, which generally supports nodeless
solutions [3]. Recent experimental data collected on high
quality samples, however, seem to invalidate the above
conclusion. The power-law temperature dependences as
T ! 0 found for the specific heat, C�T � ~ T2 [11,12], the
nuclear quadrupole-resonance relaxation rate, T21

1 ~ T 3

[13], the thermal conductivity, k�T� ~ T2 [14,15], the
penetration depth [16], and the ultrasonic attenuation [17]
point to lines of zeros in the superconducting gap and,
thus, question the consistency of the whole picture.

There have been several theoretical attempts to resolve
this controversy [18–21]. Most suggest replacing the ax-
ial p-wave order parameter dp �k� ~ �kx 1 iky� by a suit-
able f-wave gap: df �k� ~ �kx 1 iky�g�k�, where the even
parity function g�k� is chosen to have zeros, e.g., kxky or
�k2

x 2 k2
y � [19–21]. There is no clear microscopic mecha-

nism for such an f-wave instability. More importantly,
nodes in an f-wave gap are only marginally stable; i.e.,
they disappear if all symmetry allowed harmonics are in-
cluded in the expansion of the gap function. For example,
for g�k� � kxky one finds

d�k� � h1�kx 1 iky�kxky 1 ih2�kx 2 iky� , (1)

where h1 and h2 are real. Both terms in Eq. (1) trans-
form in the same way under operations of the symmetry
group of the superconducting state. In particular, both har-
monics are symmetric with respect to a fourfold rotation
eip�2C4 and time reversal in combination with a reflec-
tion in the (100) plane, eipT̂ ŝx . Therefore, the f- and
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the p-wave harmonics are symmetry indistinguishable in
tetragonal crystals and mix with each other producing a
finite gap jDjmin � h2. Very recently, two groups [14,15]
have measured the basal plane anisotropy of the thermal
conductivity k�u� in Sr2RuO4 at finite magnetic fields.
Their results also discard an f-wave gap together with a
so-called “anisotropic” p-wave state [18] as possible can-
didates to explain line of nodes in Sr2RuO4: All these su-
perconducting states have a substantial anisotropy of k�u�
in the magnetic field determined by in-plane node struc-
ture, whereas experimentally the basal plane anisotropy is
much smaller. Instead, these experiments suggest horizon-
tal nodes in the superconducting gap [14,15].

An opposite conclusion has been reached by Lupien
et al. [17] from the anisotropy of the ultrasonic absorp-
tion. However, the measured anisotropy appears mainly in
the absolute magnitude of the attenuation and not in the
exponent of the temperature power law. For this reason it
is not clear that these results are in conflict with horizontal
lines of zeros and, as Lupien et al. stress, detailed calcula-
tions based on the actual electronic structure are necessary
for a definitive interpretation of their results.

Here, we propose a mechanism for the formation of hori-
zontal line nodes in the superconducting gap of Sr2RuO4.
The Fermi energy crosses three bands, determined by the
dxy (g sheet of the Fermi surface) and the hybridized dxz

and dyz (a and b sheets) orbitals of Ru [8–10]. Magnetic
fluctuations, responsible for anisotropic Cooper pairing
[3,22], have significant orbital dependence [23]. There-
fore, the intrinsic temperature of the superconducting in-
stability should vary from band to band with one sheet
being the active source for superconducting instability and
the others being the passive sheets. In reality, interband
scattering of Cooper pairs, or proximity effect in the mo-
mentum space, will induce the superconducting gap simul-
taneously on all parts of the Fermi surface. Such interband
scattering is generally a strong effect, which allows one to
treat numerous multiband superconductors by an effective
single band Fermi surface. Agterberg and co-workers [4]
have argued that Sr2RuO4 is different: A direct in-plane
© 2001 The American Physical Society 057001-1
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scattering of the p-wave Cooper pairs between bands is
significantly suppressed by the orbital symmetry. There-
fore, they conclude, one or two bands develop only tiny
superconducting gaps, which show up at intermediate tem-
peratures as a residual density of states with a subsequent
crossover as T ! 0 to a full gap behavior. In this Letter,
we study additional interlayer contributions to interband
scattering of Cooper pairs, which become important when
direct in-plane scattering is suppressed. We find that a
nodeless axial order parameter dp�k� ~ �kx 1 iky� in the
active band can induce superconducting gaps with zeros in
the passive bands: d0

p�k� ~ �kx 1 iky� cos�kz�2�. Thus,
circular nodes of the superconducting gap develop about
the c axis on one or two of the three Fermi surface sheets.
This model of weakly coupled superconducting order pa-
rameters in different bands fits well C�T� in zero field [11]
and helps to explain the observed field behavior of the spe-
cific heat [12].
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We start with a general two-particle interaction:

V̂ �
Z

dr dr0 U�r, r0�cy�r�cy�r0�c�r0�c�r� , (2)

where for simplicity we omit all spin indices assuming a
fixed spin structure of the triplet order parameter. The band
representation for the effective interaction V̂ is obtained by
(i) expanding the field operators c�r� in terms of the band
operators: c�r� �

P
l,k wlk�r�clk (l is a band index); and

(ii) representing the Bloch function wlk�r� in a given band
as a lattice sum over the Wannier function of the Ru or-
bitals: wlk�r� �

P
n eikRnfl�r 2 Rn�. The interaction

in the Cooper channel is

V̂ �
1
2

X
ll0,kk0

Vll 0�k, k0�cy
lkc

y
l2kc0

l 02kc0
l 0k , (3)

where the scattering vertex is given by
Vll 0�k, k0� �
Z

dr dr0 U�r, r0�
X

nn0mm0

e2ik�Rn2Rn0 �eik0�Rm2Rm0�f�
l �r 2 Rn�f�

l �r0 2 Rn0�fl 0�r0 2 Rm0�fl 0�r 2 Rm� .

(4)

Following Ref. [4] we now consider interband scattering
processes (l fi l0) in the tight-binding approximation, i.e.,
assume that the Wannier functions are well localized and,
therefore, the main contribution to Vll 0�k, k0� comes from
a few neighboring sites. The largest on-site contribution
(Rn � Rn0 � Rm � Rm0) is independent of k and k0. It
causes coupling only between conventional s-wave order
parameters in two bands. The coupling of the p-wave
order parameters appears first in the sum (4) for Rm � Rn,
Rm0 � Rn0 , and �Rn0 2 Rn� � di � 6ax̂�ŷ� (a is lattice
constant):

V
pp
ll 0 �k, k0� �

X
i�x,y

sinkia sink0
ia

3
Z

dr dr0 U�r, r0�

3 f�
l �r�fl0�r�f�

l �r0 2 di�fl 0�r0 2 di � .

This direct in-plane scattering of the Cooper pairs induces
the same nodeless superconducting gap,

d1�k� ~ �sinkxa 1 i sinkya� , (6)

on all sheets of the Fermi surface. If we now approxi-
mate in a tight-binding spirit U�r, r0� � U�di�, then the
double integral in Eq. (5) factorizes in a product of two
spatial integrals. Each of these integrals vanishes sepa-
rately for l � g and l0 � a, b because the orbitals from
these bands have different parity with respect to ŝz . Thus,
it is essential to keep spatial dependence of U�r, r0�. For a
Coulomb-type interaction, the off-diagonal matrix element
(l fi l0) in Eq. (5) has a dipolar reduction �b�a�2 � 0.02
[4] compared to the diagonal matrix elements (l � l0),
where b is a characteristic spatial extension of the Wan-
nier functions. In reality, the matrix element will be re-
duced even further because dxz and dyz orbitals mix in a
and b bands only in a close vicinity of the Brillouin zone
diagonals. Away from these directions, there is an extra
approximate symmetry ŝx� y�, which introduces an effec-
tive quadrupolar reduction of the matrix element in Eq. (5).
Thus, the direct interaction of the p-wave order parameters
between g and a or b bands is significantly reduced, and
the amplitude of the type-I gap (6) in passive bands should
be much smaller than in the active band [24].

The next contribution to the interband scattering
of the p-wave pairs in Eq. (4) comes from interlayer
terms with Rm � Rn and Rn0 � Rn 6 ax̂�ŷ�, Rm0 �
Rn 6

a
2 x̂ 6

a
2 ŷ 6

c
2 ẑ on a body-centered tetrago-

nal lattice of Ru atoms. Summing over all contributing
sites, the p-wave gap of the type (6) in the g band induces

d2�k� ~

µ
sin

kxa
2

cos
kya

2
1 i sin

kya

2
cos

kxa
2

∂
cos

kzc
2

,

(7)
in a and b bands and vice versa. Existence of the type-II
p-wave gap, but in all bands simultaneously, has been con-
jectured by Hasegawa et al. [19]. They, however, based
their suggestion on an (unjustified) assumption of a repul-
sive interaction between electrons in a single Ru-O plane
and an attraction only for electrons in adjacent layers. The
type-II superconducting gap d2�k� has circular line nodes
at kz � 6p�c. Importantly, they are stable with respect
to an admixture of a small amount of the type-I gap, which
shifts only the position of zeros along kz. The two gaps are
mixed with a real phase, as required by the time-reversal
symmetry (T̂ ŝx), and nodes of d1 1 d2 disappear only
for jd1jmax . jd2jmax.

A reliable estimate for the strength of the scattering
vertices corresponding to the two types of induced gaps
(6) and (7) is possible only in the framework of complete
microscopic theory of the Fermi liquid state in Sr2RuO4.
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Note that scattering processes contributing to Eq. (7) have
one symmetry cancellation factor less than Eq. (6), but in-
stead they are reduced by a small overlap of the orbitals in
adjacent layers. Information on the interlayer overlap can
be obtained by analyzing the results of the high-precision
de Haas–van Alphen measurements [10], which deter-
mined corrugation of the Fermi surface cylinders along
kz . Bergemann et al. [10] found the strongest corrugation
in the b sheet of the Fermi surface: DkF,b � cos�kzc�2�
and a much weaker corrugation of the g sheet: DkF,g �
cos�kzc�. This different periodicity naturally appears in
a tight-binding model: A direct interlayer overlap t0� of
dxz �dyz� orbitals yields a diagonal first-order contribution
to the band energy: D´a,b�k, kz� � 8t0� cos�kxa�2� 3

cos�kya�2� cos�kzc�2�. On the other hand, planar dxy or-
bitals do not hybridize across the layers. However, they can
hybridize with dxz �dyz� orbitals in adjacent planes with
the hopping amplitude t00�, which produces the interband
matrix element 8t00� cos�kx� y�a�2� sin�ky�x�a�2� sin�kzc�2�.
As a result, the corrugation of the g sheet is a rela-
tively weaker second-order effect D´g�k, kz � �
�t00� cos�kzc�2��2��´g �k� 2 ´a,b�k��, where smallness of
the interband-interlayer hopping is partially compensated
by closeness of the Fermi surfaces. Comparing to the
experimental results, we find t0� � 21 meV and a some-
what larger magnitude for t00� � 3 meV. The degree of
mixing of different orbitals is controlled by the parameter
t00���´g�k� 2 ´a,b�k�� � 0.1, which is comparable to
or even exceeds the reduction of the matrix elements in
Eq. (5).

We consider now the effect of line nodes in passive
bands on thermodynamic properties of the superconduct-
ing state. In particular, we calculate the specific heat C�T�.
Since the Cooper pair scattering between the a and the b

sheets is not small, we adopt an effective two-band model
for Sr2RuO4 and split the total density of states at the Fermi
level according to N01 : N02 � N0g : �N0a 1 N0b� �
0.57 : 0.43 based on the de Haas–van Alphen measure-
ments [8]. We also assume that the active sheet for the
superconducting instability is the g sheet. Our main mo-
tivation for this assumption comes from comparison with
the experimental data below. We adopt a weak-coupling
approach and parametrize the pairing potential in the two
bands by three parameters: V11�k, k0� � 2g1f�k�f�k0�,
V22�k, k0� � 2g2f̃�k� f̃�k0�, and V12�k, k0� � 2g3f�k� 3
f̃�k0�, where we choose for simplicity f�k� � k�kF and
f̃�k� �

p
2 �k�kF� cos�kz�2�, i.e., we presume that only

interlayer processes contribute to the interband scattering
of the Cooper pairs [25]. The pairing interaction in
the active band is attractive (g1 . 0), while interaction
constants in the passive band (g2) and between the bands
(g3) can have arbitrary sign. Solving the system of the
two gap equations numerically, we determine the specific
heat from

C�T� � 2
X
l,k

Elk
df�Elk�

dT
, (8)
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where Elk is the quasiparticle excitation energyq
e

2
lk 1 D

2
l �k� (we consider only unitary triplet states),

and f�Elk� is the corresponding Fermi distribution.
We present in the upper panel of Fig. 1 the specific

heat for different choices of the coupling constants in the
two-band model. The calculations have been done for a
“typical” weak-coupling magnitude of g1 � 0.4 (in units
of the inverse total density of states) varying the two other
parameters. The first three curves correspond to weak
g3 � 0.01g1 (No. 1), intermediate g3 � 0.07g1 (No. 2),
and strong g3 � 0.2g1 (No. 3) interband scattering of the
Cooper pairs, keeping in all cases g2 � 0.85g1. Such a
moderate change in the coupling constants between the
two bands l2�l1 � g2N02�g1N01 � 0.64 results in an or-
der of magnitude difference in their bare transition tem-
peratures: Tc2�Tc1 � 0.086 in the weak-coupling theory.
For the weaker interband coupling, the heat capacity de-
velops a second peak, which reflects a nonzero bare tran-
sition temperature in the passive band. For the stronger
interband coupling, the two gaps are tightly bound to each
other and we return to an effective one-band behavior. The
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FIG. 1. Temperature dependence of the normalized specific
heat. Upper panel: The two-band model results for various
choices of the interaction parameters. Curves No. 1–3 cor-
respond to g2�g1 � 0.85 and g3�g1 � 0.01, 0.07, 0.2, respec-
tively. The curve No. 4 is for g2�g1 � 0.1 and g3�g1 � 0.07.
Lower panel: Circles are experimental data for Sr2RuO4 [11].
One-band results are shown for an anisotropic gap with line
nodes (dashed line) and for an isotropic gap (dot-dashed line).
The solid line is the two-band model fit with g2 � 0.85g1 and
g3 � 0.07g1.
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curve No. 4 is an example of a shoulder in the temperature
dependence of C�T , which arises for a reduced pairing in-
teraction in the passive band g2 � 0.1g1 if we keep the
same g3 � 0.07g1 as for the curve No. 2.

In the lower panel of Fig. 1 we present our fit to the ex-
perimental data of NishiZaki et al. [12] (same as the curve
No. 2). The strength of the interband scattering vertex,
g3, is an order of magnitude smaller than the intraband
vertices, g1, g2. The relative value is rather more than
the simplest estimates which give the square of the inter-
layer mixing of orbitals in the bands at the Fermi energy.
A priori estimates of g1, g2, and g3 are difficult. We note,
however, that direct Coulomb processes can contribute to
g3, and this may account for the increase in its value over
the simplest estimate. One point which shows remarkably
good agreement is the size of the specific heat jump at
T � Tc (DC�Cn � 0.82). This value coincides with the
BCS value for the g band alone (1.43Ng�N0) and is a di-
rect confirmation of our choice of g as the active band.
Though it is impossible to fix all three parameters of the
two-band model uniquely, this model can naturally explain
a clear convex shape of the experimental data for C�T
at low temperatures by choosing an intermediate strength
of the interband scattering matrix element. In contrast, a
one-band model with an anisotropic gap or the two-band
model with a strong interband scattering predict a concave
shape for C�T . From our fit we cannot also exclude a
possibility of a small but finite jDminj in the passive bands,
which appears if in-plane scattering amplitude slightly ex-
ceeds the interplane contribution (7).

The field dependence of the residual density of states
at low temperatures suggests another argument in favor
of the multiband scenario. Small magnetic fields (øHc2)
quickly restore about 40% of the total density of states
[12]. In our model, this corresponds to the behavior ex-
hibited by the curve No. 4, the upper panel in Fig. 1, in
the case of temperature effects. Such a new feature in
the external field arises because of an additional suppres-
sion of superconductivity in the passive a and b bands for
H � c. Stronger c-axis dispersion in these bands leads
to a larger coherence length jc and an extra reduction of
the bare Hab

c2 . This effect should disappear for H k c be-
cause of similar values of the in-plane Fermi velocities,
which also agrees with the experiment [12]. It would be
also interesting to reinvestigate the impurity effect on the
residual density of states. Such an analysis has been done
previously for the two-band model with a constant gap am-
plitude in the passive band [26]. Line nodes can modify the
expected behavior and produce a gapless superconducting
state in the passive bands.

In summary, we have shown that circular horizontal line
nodes in the superconducting gap of Sr2RuO4 appear due
to a weak and anisotropic interband proximity effect. This
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effect is a consequence of (i) non-s-wave symmetry of the
Cooper pairs [conventional superconductors have gener-
ally a strong isotropic interband coupling dominated by
the on-site term in Eq. (4)] and (ii) specific symmetry of
the Ru orbitals, which give extra suppression of the matrix
element in Eq. (5). Further experimental tests of our sce-
nario should include studying effects of pressure, which
can modify the strength of interlayer scattering amplitude
for the Cooper pairs.
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