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Three-Dimensional Elastic Compatibility and Varieties of Twins in Martensites
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We model a cubic-to-tetragonal martensitic transition by a Ginzburg-Landau free energy in the sym-
metric strain tensor. We show in three dimensions (3D) that solving the St. Venant compatibility relations
for strain, treated as independent field equations, generates three anisotropic long-range potentials be-
tween the two order parameter components. These potentials encode 3D discrete symmetries, express
the energetics of lattice integrity, and determine 3D textures. Simulation predictions include twins with
temperature-varying orientation, helical twins, competing metastable states, and compatibility-induced
elastic frustration. Our approach also applies to improper ferroelastics.
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Strain plays a crucial role in many structural phase tran-
sitions, either as a primary order parameter (OP), e.g.,
in martensites [1] and shape-memory alloys [2], or as a
secondary OP, e.g., in ferroelectric [3] and magnetoelas-
tic [4] materials. Complex, nonuniform, and temperature-
dependent strain variations or elastic textures, e.g., a rich
variety of twins, form spontaneously, as seen by high reso-
lution electron microscopy (HREM) and neutron scattering
studies. In alloys such as NixAl12x , martensite forms with
a long period stacking structure involving (110) planes [5],
while in FexPd12x , (011) twins preferentially grow at the
expense of (101) twins as the temperature is lowered [6].
Intrinsically inhomogeneous states of spin and charge in
high-temperature superconductors [7] and colossal magne-
toresistance manganites [8] are the subject of intense study
and could be understood as induced by coupling to the
strain tensor [9]. Thus a deeper understanding of complex
3D twins in martensites through a Ginzburg-Landau (GL)
description in terms of the OP strain tensor components
alone may be more widely relevant.

Displacive martensites have been modeled through a GL
free energy F that is anharmonic (“triple-well”) in the OP
strain tensor components and harmonic in the non-OP com-
ponents. However, in both analytic and simulation work,
the displacement �u�r� has conventionally been chosen
[10–12] as the independent variable. The physical re-
quirement of smoothly fitting deformed unit cells, without
defects such as dislocations or vacancies, is enforced
through demanding the single valuedness of �u. The strain
tensor appearing in F is merely a symbol for gradients of
�u. Analogously, in electromagnetism the vector potential
�A can be the independent variable, and the absence of mag-
netic monopoles can be enforced by requiring its single val-
uedness, with the magnetic field as a derived quantity.
However, we know that an alternative treatment of electro-
magnetism regards the physical magnetic field �B as the
only independent variable and takes �= ? �B � 0 as a “no-
monopole” independent dynamical field equation. Simi-
larly, elasticity can also be usefully treated in terms of only
the physical strain tensor eij�r�. The St. Venant’s compati-
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bility condition = 3 �= 3 e�y � 0 [13], which is merely
an incidental identity when expressed in terms of �u, can be
elevated to the status of “no-defect” independent dynami-
cal field equation [14]. For the 2D square-to-rectangle
transition, solving this differential equation linking strain
tensor components allows non-OP strains in the free
energy to be written in terms of the single deviatoric OP
strain alone. This yields one texture-inducing, anisotropic
long-range (ALR) potential between OP strains in the
bulk. To show this strain-only approach works more
generally, we must consider realistic 3D lattices of richer
discrete symmetries, and multicomponent OP strains.

In this Letter we show for the first time, using the ex-
ample of the cubic-to-tetragonal transition, that an OP
strain-only compatibility-based description of 3D marten-
sites is possible. We obtain a GL understanding of textures
in terms of the two OP strain components, with three bulk
ALR forces that encode the discrete cubic unit-cell sym-
metry, express the energetics of 3D lattice integrity, and
determine 3D textures. In simulations we find twins with
a temperature-dependent orientation, twins with an inter-
plane helical twist, and frustrationlike competition between
free energy minima. These features have no 2D analog,
and some are similar to experiment. Others are predic-
tions for high resolution microscopies.

The procedure, which can be carried out also for proper
ferroelastic transitions of all seven crystal systems, is as
follows. The GL free energy contains both anharmonic
terms in the (two) OP deviatoric strains and harmonic
terms in the “non-OP” compressional and (three) shear
strains. A constrained minimization in terms of the non-OP
strains incorporating six St. Venant compatibility equa-
tions yields the desired effective free energy F in terms of
the OP strains alone. The OP textures that minimize this
F automatically satisfy elastic compatibility, and non-OP
textures are derived from them. We note that for real, finite
systems, there are two types of ALR compatibility forces:
bulk and surface. The latter arise from the boundary con-
ditions at surfaces such as habit planes (i.e., austenite-
martensite or parent-product boundaries) and can impose
© 2001 The American Physical Society 055704-1
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a system-size dependent twin width [10,14]. However, for
simplicity, we focus here only on the bulk compatibility
potential and periodic boundary conditions.

Model.—For the cubic-to-tetragonal transition, the
symmetry-adapted strains ei can be defined in terms of the
Lagrangian strain tensor components eij as the dilatation
e1 � �1�

p
3 � �e11 1 e22 1 e33�, the two deviatoric (i.e.,

OP) strains e2 � �1�
p

2 � �e11 2 e22�, e3 � �1�
p

6 � �e11 1

e22 2 2e33�, and the three shear strains e4 � 2e23, e5 �
2e13, e6 � 2e12. The elastic energy in 3D is given by [15]
F � FL�e2, e3� 1 Fgrad�=e2, =e3� 1 Fcs�e1, e4, e5, e6�,
where the Landau free energy (Fig. 1) summed over unit
cells, is
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The Ginzburg (or gradient) contribution, which is respon-
sible for the interfacial energies, ignoring non-OP gradi-
ents as of secondary importance, is
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where the x, y, z subscripts refer to corresponding deriva-
tives. The harmonic elastic energy contribution due to
non-OP compression/shear (CS) strain components is
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FIG. 1. Contour plot of the Landau free energy in the marten-
site phase depicting the three degenerate energy minima cor-
responding to the three tetragonal variants with tetragonal axis
along the x, the y, and the z axis, respectively. Parameters are
A � 21.0, B � 0.83, and C � 0.04.
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and is symmetry distinguished from harmonic parts of
the OP free energy FL. We do not consider a coupling,
Fcompos�h, =h, e2, e3�, of the OP strain to compositional
fluctuations h, which is responsible for tweed.

The coefficients A � Ao�T 2 To�, B, and C are related
to the second, third, and fourth order elastic constants, re-
spectively, and are obtainable from experimental structural
data. Ac and As are the (bulk) compression and shear mod-
uli, respectively. The parameter To is the martensitic tran-
sition temperature and the gradient coefficients g and h
can be determined from the phonon dispersion near the
Brillouin zone center or from a direct HREM observation
of the twin boundary width.

3D compatibility and analysis.—The six compatibility
conditions on the strain components are the cyclic permu-
tations in tensor labels 1, 2, 3 of the two equations:
C�1� � e23,yz 2 e22,zz 2 e33,yy � 0 and C�2� � 2e11,yz 1

e23,xx 2 e31,xy 2 e12,xz � 0. The six equations can all
be recast in terms of the symmetry-adapted ei�r� strains,
which transform irreducibly under the space group Pm3m.
The compatibility constraints can be enforced in F through
six Lagrange multipliers L�����r�, with � � 1, 2, . . . , 6:
d�Fcs�e1,e4, e5, e6� 1

P
�

P
r L���C���� � 0.

Since Fcs is harmonic in the four non-OP strain fields,
their independent variations allow them to be written in
terms of derivatives of the six Lagrange multipliers (and,
of course, the OP fields). Substituting back into the six
compatibility equations and using Fourier transforms per-
mits an elimination of L��� and finally yields e1, e4, e5, e6
in terms of the OP ea with a � 2, 3.

The bulk compression/shear term can be written as

Fbulk
cs �

X
a,a0

X
k ea� �k�Uaa 0� �k�e�

a 0��k� .

The bulk kernels U22, U23, and U33 in Fourier space, which
we display in contour plots (Fig. 2) but do not explicitly
write out, are complicated functions of �k that are clearly
strongly anisotropic. At long wavelengths they depend
only on ratios of components kx , ky , and kz , so in spherical
polar coordinates, Uaa 0��k� � Uaa 0�u, f�. They vary with
wave vector direction angles u and f but are independent
of magnitude j �kj and so do not set a mesoscopic length
scale. In coordinate space, Fbulk

cs �
P P

ea� �r�Uaa 0� �r 2
�r 0�ea 0�r 0�, with the ALR kernels U�R� � 1�Rd , where
d � 3 comes from phase space. The anisotropies of the
three kernels encode the full discrete symmetries of the
3D cubic-to-tetragonal transformation: Fbulk

cs is invariant
under the operations of the point group m3m. The corre-
sponding 2D case shows [14] important differences.

First, in 3D there are three kernels in Fbulk
cs with dif-

ferent favored directionalities: competing nonzero energy
minima can produce orientational elastic frustration. Sec-
ond, Fgrad in Fourier space depends on both j�kj and u,
f so the lowest-energy orientation from the combination
055704-2
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FIG. 2. 3D compatibility kernels U22 (upper) and U33 (lower)
as a function of the colatitude u and the azimuth f angles.
Dashed contours surround minima, and dash-dotted contours
surround maxima, while solid contours show intermediate levels.
As � 1.2 and Ac � 2.4. U23 is not shown.

Fbulk
cs 1 Fgrad is at a nonzero j �kj: there is an internal textu-

ral length. Third, the combination involves weighted sums,
with OP field e2, e3 acting as weights. Since the e2, e3 rela-
tive magnitudes are temperature dependent as determined
by FL, this change of weights can yield temperature-
varying orientations within the martensite phase.

In 2D, by contrast, with one OP, an isotropic gradient
term dependent only on j �kj, and one bulk orienting po-
tential [11,14], there is only one directional zero-energy
minimum that is independent of the amplitude of the strain
field. Hence there is no elastic frustration or internal twin
scale. A size-dependent twin width [10] is induced by the
surface contribution Fsurface

cs [14].
Figure 2 shows contours of kernels U22 and U33 as func-

tions of the angles u and f. The minima define a direction
in 3D in which the compression-shear energy arising from
the particular kernel is minimal. There exist multiple min-
ima, i.e., microstructures of differing orientation.

Texture simulations.—The various energy-minimizing
martensitic textures are found from random initial condi-
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tions and relaxational dynamics for the OP strains. That
is, �ea�r� � 2dF�e2,e3��dea�r�, with a � 2, 3 and the
time t is scaled with a characteristic relaxation rate. The
system is a regular 323 cube with periodic boundary con-
ditions. To ensure fully equilibrated textures in e2�r� and
e3�r�, we monitor the energy flattening with time over long
runs of 105 time steps (Dt � 1023), and the robustness of
textures to noise.

We illustrate the simulation results obtained with repre-
sentative (scaled) parameters. The red/blue/green colors
represent (e2, e3) positive/negative/zero OP strain values,
respectively (the actual values are approximately deter-
mined by the minima of FL, as illustrated in Fig. 1).

Figure 3 shows the simplest twinning texture [(110)
twins] that is uniform in the z direction. The strain e2
changes from negative (minimum I in Fig. 1) to positive
(minimum II in Fig. 1) (i.e., blue to red). The strain e3 is
not shown, as it is essentially constant with a small modu-
lation at the twin boundaries. This particular martensitic
texture is the trivial extension of the (diagonally oriented)
2D results [14] since the OP fields are uniform in the z
direction.

A richer texture is shown in Fig. 4, where the strain e3

changes from negative (minimum III in Fig. 1) to positive
(minimum I or II in Fig. 1), i.e., blue to red. The strain
e2 would be either zero (green) when e3 is negative (mini-
mum III) or positive/negative when e3 is positive. The
figure clearly shows helical twins with strain e2 that can
be oriented in two possible ways, reflecting the inversion
symmetry of the kernels with respect to x, y. We note that a
similar alternating stripe-direction microstructure has been
implied by neutron and x-ray scattering studies in layered
high-temperature superconductors [7].

To illustrate the effect of frustration that is inherent in
the compatibility relations, we explain the orientation of
the twins (Fig. 4). We evaluate free energy for the red
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FIG. 3 (color). 3D twins in the (110) plane obtained from the
time-dependent GL simulations, with representative parameters
as given in Figs. 1 and 2, and h � 1 and g � 1. The twin scale
is determined by the competition between the Ginzburg energy
and the bulk compression/shear energy.
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FIG. 4 (color). 3D twins with two different orientations, (110)
and (110), in adjacent planes. Both OP fields are shown, e3 in
the upper panel and e2 in the lower panel.

and blue twins, respectively, using the appropriate values
of the strains e2 and e3 in the twins. Figure 5 depicts this
energy in the u-f plane. The dashed (solid) line shows the
minimum corresponding to the blue (red) twins. We note
that the minima correspond to different f angles (45 1 d

and 45 2 d). The shift d depends on the parameters of
the Landau free energy. The red and blue twins have dif-
ferent and conflicting optimal orientations, accommodated
by both choosing the average angle of 45±. This aspect of
competing metastable states is a novel feature associated
with the cubic symmetry kernels, leading to a rich land-
scape of predicted microstructures.

Conclusion.—We have derived a complete symmetry
based, strain-only, fully 3D model that describes textur-
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FIG. 5. Free energy of the red and blue twins illustrating in-
herent strain (orientational) frustration in 3D.
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ings around the cubic-to-tetragonal structural transitions
that occur in many martensitic and shape-memory alloys.
We obtained analytically three compatibility-induced an-
isotropic long-range potentials between the two deviatoric
OP strains. Many twin orientations are possible in 3D as a
result of elastic frustration and the “landscape” (probably
“rugged”) of metastable energy states. Image reconstruc-
tion methods of data from HREM and neutron scattering
will allow a more quantitative comparison of strain pat-
terns with those predicted here. Our model can be straight-
forwardly generalized to improper ferroelastic transitions
by including symmetry allowed polarization/magnetiza-
tion nonlinear terms, and couplings to strain [9]. Other
symmetries can be handled. For example, we have also
studied the cubic-to-trigonal (rhombohedral) transition in
lead orthovanadate and NiTi- and AuCd-based shape-
memory alloys using the three shear strains e4, e5, and e6

as OP and with e1, e2, and e3 expressed in terms of the
shear strains via compatibility. Finally, we note that for
an inclusion of tetragonal symmetry (e2 � 0, e3 � e0)
the kernels yield a strain field �e0�r3, as in Eshelby’s
result [16].
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