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Neoclassical Radial Electric Field and Transport with Finite Orbits
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Neoclassical transport in a toroidal plasma with finite ion orbits is studied, including for the first
time the self-consistent radial electric field. Using a low-noise df particle simulation, we demonstrate
that a deep electric-field well develops in a region with a steep density gradient, because of the self-
collision–driven ion flux. We find that the electric field agrees with the standard neoclassical expression,
when the toroidal rotation is zero, even for a steep density gradient. Ion thermal transport is modified
by the electric-field well in a way which is consistent with the orbit squeezing effect, but smoothed by
the finite orbits.
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In magnetic confinement fusion experiments with
improved confinement regimes (H mode and internal
transport barrier) [1] where turbulence is suppressed and
collisional transport is dominant at least for the ion chan-
nel, standard neoclassical theory [2] is routinely compared
with experimental results. However, this theory assumes
that orbit widths are small compared with plasma gradient
scale lengths, and is not valid in tokamak plasmas with
internal transport barriers. A theory of collisional plasma
transport in toroidal magnetic confinement devices, which
extends the standard neoclassical theory to allow finite
orbit widths, does not yet exist. Although some work has
been done on this problem [3], the self-consistent radial
electric field Er has not been included. Determining Er

is a fundamental issue in understanding the physics of
plasma confinement. Without a self-consistent radial elec-
tric field, neoclassical particle transport is not ambipolar
because of self-collision–driven ion flux; ambipolarity
requires the development of a neoclassical radial electric
field. The electric field in turn affects the collisional
transport rates through finite orbit effects, even though the
neoclassical transport rates do not depend on the radial
electric field in the limit of the small orbit width.

In this Letter, the neoclassical electric field and colli-
sional transport under this self-consistent electric field in
toroidal plasma are investigated for the first time using
a low-noise df simulation. Our emphasis is on the
conditions of steep plasma gradients which characterize
the enhanced confinement plasmas in current tokamak
experiments. We neglect transport effects due to tur-
bulence. The main results are as follows. Ambipolar
neoclassical transport with vanishing self-collision–driven
ion flux is demonstrated as the self-consistent electric
field Er develops. The equilibrium Er is found, regardless
of the steepness of the density profile, to be consistent
with the standard neoclassical expression for Er when
the ion parallel flow is small (for uniform temperature,
the expression reduces to a Boltzmann relation). A deep
electric-field well (with strong shear) is found in a region
with steep density gradient. Ion thermal transport is
reduced on the side of the well with negative Er shear and
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increased on the outer side with positive shear, relative to
the standard neoclassical level. This is consistent with the
orbit squeezing effect of the Er [4] and is obtained for the
first time in numerical simulation. Also, the ion heat flux
near the magnetic axis is reduced by the effects of finite
orbits and the electric field.

The basic equation governing the radial electric field
is, from Poisson’s equation and the continuity equa-
tions, ≠Er�≠t � 24pjr , where the radial current jr

is the sum of the classical ion polarization current,
jc

p � �nimic2�B2�≠Er �≠t, and the ion guiding-center
current (the electron current is neglected because it is
smaller than the ion current by a factor of mass ratio
me�mi). In terms of a general magnetic surface geometry
the equation for the radial electric field becomes∑
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where F is the potential, c is the poloidal magnetic flux,
e and ni are the ion charge and density, respectively, c is
the light speed, and the angular brackets denote the flux
surface average. Here the flux of the ion guiding cen-
ters Gi is the sum of neoclassical diffusion and polariza-
tion currents: �� �jnc

d 1 �jnc
p � ? =c� � eGi � e�

R
d3y� �yd ?

=c�fi �. The radial guiding center drift is �yd ? =c �
Iykb̂ ? =�yk�Vi�, where I � RBz (with R being the major
radius and Bz being the toroidal component of magnetic
field �B, b̂ � �B�B), yk is the particle parallel velocity, and
Vi � eB�mic is the ion gyrofrequency.

The ion guiding center distribution function fi obeys the
drift kinetic equation,
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where the independent velocity variables are the magnetic
moment and energy ´ � y2�2 1 eF�mi with y the par-
ticle speed, and C is the ion-ion collision operator.

In the limit of the small orbit width, partial transport
is intrinsically ambipolar to second order in ion poloidal
gyroradius riu over plasma gradient length L, indepen-
dent of the strength of the radial electric field. In order
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to determine the electric field, one needs to calculate the
self-collision–driven ion flux or the toroidal angular mo-
mentum flux, Pi � �

R
d3y �Iyk�Vi� � �yd ? =c�f�, which

gives fourth order transport rates, where the drift kinetic
equation must be solved to second order. An analytical so-
lution was obtained in the banana regime [5]; in the case
of a zero temperature gradient, the ion flux is
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where V is the volume enclosed by a magnetic surface
c � const, and V 0 � dV �dc; the first term gives the
neoclassical polarization current and the second term gives
the diffusion current. The toroidal angular momentum
flux Pi is proportional to �≠2�≠c2� �lnni 1 eF�Ti�. The
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steady-state condition ≠F�≠t � 0 requires Pi � 0. Thus
we obtain a Boltzmann-like relation for the equilibrium
potential:

ln
ni

na
1

eF

Ti
� bc , (4)

where b is a constant related to the edge toroidal rotation
and na is a constant.

In order to study the problem in general and realistic
toroidal plasmas, we employ df particle simulation.
The df simulation solves the drift kinetic equation
based on the decomposition fi � fM 1 df, where
fM � nieeF�Ti �mi�2pTi�3�2e2mi´�Ti with the den-
sity and temperature defined as ni � �

R
fi d �y� and

Ti � �
R

�miy
2�3�fi d �y��ni . The drift kinetic equation

for df is
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which is solved as an initial value problem. The self-
consistent radial electric field is calculated from Eq. (1)
with the ion flux Gi being evaluated as a moment of df.
Note that keeping the drift term in the left-hand side of
Eq. (5) allows us to study the finite orbit effects while
the plasma gradient is large. Our df simulation uses
a two-weight algorithm [6] incorporating a noise reduc-
tion algorithm [7]. The two-weight algorithm, rigorously
reproducing the drift kinetic equation, ensures consistent
simulations in solving the equation and the noise reduction
algorithm achieves its goal by introducing damping terms
in the weight equations. The ion-ion Coulomb collisions
are modeled by a linear Monte Carlo collision operator
which was demonstrated to conserve momentum, energy,
and particle number nearly perfectly [6].

Our fully toroidal df code FORTEC-E follows a toroidal
plasma to steady state in a magnetic coordinate system.
In each simulation the initial toroidal plasma has a
local Maxwellian distribution with given density and
temperature profiles. The change in density is negli-
gible because it occurs on a time scale longer than that
for Er . Since the initial toroidal rotation is zero, the
angular momentum relaxation associated with the electric-
field development is insignificant, leading to the fast
establishment of a steady state typically in about ten
ion-collision times. The temperature change is also in-
significant on this time scale and is neglected for simplicity.
The simulations presented here are carried out for large
aspect ration circular geometry with the magnetic field
�B � �B0�h�ẑ 1 r��qR0� �B0�h�û, where z is a toroidal
angle. The equilibrium parameters used are B0 � 3 T,
major radius R0 � 3 m, and minor radius a � 0.5 m.
The safety factor q�r� is uniform but may vary for each
simulation. A Gaussian or super-Gaussian profile is used
for temperature and density: Ti � T0 exp�2at�r�a�2�
and ni � An 1 Bn exp�2an�r�a�bn �. The temperature
gradient length LT is chosen to be much larger than the
ion banana orbit width, Db � riu�r�R�1�2, so that the
local Maxwellian equation is justified and the df method
is applicable. The number Db�Ln which measures the
steepness of the density gradient or orbit size is changed
by adjusting parameters an, bn, T0, and q. It varies
over the simulations from 0.04 to 0.45 (riu�Ln * 1,
corresponding to a steep gradient). The typical value of
Db�LT is 0.04. The collisionality ranges radially from a
banana regime to a plateau regime near the axis in each
simulation. We used 4 3 106 particles.

The ambipolarity of neoclassical transport with a self-
consistent electric field is numerically demonstrated and
compared to the case without Er in Fig. 1. With no elec-
tric field a considerable self-collision–driven ion flux is
found in the region within the inner half radius, violat-
ing ambipolarity. The time history of a local ion flux
which evolves to a positive steady-state value is shown
in Fig. 1(a). Moreover, the self-collision–driven ion flux
is observed regardless of the shape of the density profile.
Of course, with nonzero toroidal rotation, a steady state
is possible with no electric field. To check the reliability
of our result, we also performed a simulation of the zero
orbit width limit (neglecting the drift term). As shown in
Fig. 1(c), no self-collision ion flux is produced, which ex-
cludes the possibility that the ion flux might be created
nonphysically by the collision model if used inappropri-
ately, for instance, without momentum conservation. The
nonambipolarity implies that a radial electric field is re-
quired in a toroidal plasma. Indeed, when we include the
self-consistent electric field through Eq. (1) in the simula-
tion, ambipolarity is restored with a vanishing ion flux, as
shown in Fig. 1(c). The corresponding time history with
the self-consistent electric field is shown in Fig. 1(b).
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FIG. 1. Self-collision –driven ion flux: time history of nor-
malized ion flux in simulation (a) without Er and (b) with Er ;
(c) ion fluxes at steady state.

A general feature of the electric-field dynamics is the ap-
pearance of geodesic acoustic oscillations [8] in the initial
phase of the Er development, which then relax to a steady
state, consistent with the previous studies [9]. Further re-
laxation to the equilibrium defined by Pi � 0 would be
accompanied by the toroidal angular momentum transport,
which would be significant when there is an initial nonuni-
form toroidal rotation.

In the case of zero temperature gradient, the equilibrium
electric field, as shown in Fig. 2, is in excellent agreement
with the Boltzmann relation. Moreover, simulation with
a steep density gradient �Db�Ln � 0.45� shows that the
Boltzmann relation is again obtained as long as the tem-
perature is uniform.

FIG. 2. Equilibrium Er [in units of mia2V
2
i0��ea�] for zero

temperature gradient plasmas with small and large density
gradients.
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With the above rigorous benchmark, we next simulate
toroidal plasmas with a nonzero temperature gradient. The
equilibrium electric field is plotted in Fig. 3 for both small
�Db�Ln � 0.04� and large �Db�Ln � 0.4� density gradi-
ents. It is interesting to compare our simulations with the
standard neoclassical expression for the ion parallel flow
(or, equivalently, the toroidal rotation):
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where k is a function of ion collisionality. Because initial
toroidal rotation is zero in the simulations and because col-
lisions conserve momentum, the parallel flow (and toroidal
rotation) at the steady state is very small compared with the
Er term in Eq. (6). The equilibrium Er is found to be con-
sistent with Eq. (6) with uik � 0 even when the plasma
gradient is large. This result suggests that Eq. (6) can con-
tinue to be used in experiments to infer Er from rotation
measurements when the density gradient is steep.

We now study the effects of the self-consistent elec-
tric field on ion thermal transport. We discuss the case
of the small density gradient �Db�Ln 	 0.04�. The ion
heat fluxes from the simulations with Er , without Er , and
without a drift term are plotted in Fig. 4, and compared
with the neoclassical formula [10]. All results for the heat
flux show good agreement with each other in the region
outside half minor radius. The radial electric field does
not make the ion heat flux differ from the standard neo-
classical prediction, except in the region near the magnetic
axis, where nonstandard orbits may modify the standard
neoclassical calculations. This is consistent with the fact
that neoclassical transport rates are independent of Er in
the small orbit limit. In comparison, the simulation with no
Er gives a smaller ion heat flux in the region within the in-
ner half radius. Moreover, because of a significant contri-
bution from the self-collision–driven ion flux, the energy
flux is inconsistent with the heat flux, while the simulation
with self-consistent Er gives energy flux the same as heat
flux. In the zero orbit limit the simulation recovers the
standard neoclassical result, as expected.

FIG. 3. Equilibrium Er for the nonzero temperature gradient
case.
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FIG. 4. Ion heat flux versus r�a for the small density gradient
plasma

Self-consistent neoclassical transport in large gradient
plasma is more interesting. As shown in Fig. 3, a deep ra-
dial electric-field well develops in the region of the large
density gradient. The shear of Er changes direction at
the well bottom r � rc (which is close to the location
of the steepest density gradient). In the neighboring re-
gions of the well bottom, ion thermal transport is sig-
nificantly modified with this self-consistent radial electric
field. As shown in Fig. 5, the modifications in the two
sides of r � rc go in opposite directions, depending on
the Er shear. Ion heat flux is largely reduced in the in-
ner side �r , rc� and increased in the outer side �r . rc�,
relative to the standard neoclassical value. This is con-
sistent with the orbit squeezing effects of the Er . In a
sheared radial electric field, the ion banana width is re-
duced by a factor of

p
S and the trapped ion fraction is

increased by the same amount, where the orbit squeezing
factor S � 1 2 �e�miV

2
iu�≠Er�≠r. As a consequence,

the standard neoclassical result of ion heat flux is modi-
fied by a factor of S23�2 [4]. For the self-consistent elec-
tric field obtained in the simulation, S . 1 at r , rc and
S , 1 at r . rc. This modified neoclassical result is
shown to agree reasonably well with the simulation re-
sult, except near the magnetic axis. The smoother radial
variation of the ion flux from the simulation may be at-
tributed to the nonlocal effect of the ion radial drifts near
rc, which span a significant portion of the minor radius.
Near the magnetic axis, ion thermal transport is reduced
nearly 1 order of magnitude relative to the standard neo-
classical level by electric-field effects and nonstandard or-
bits. A previous study without the self-consistent radial
electric field gave a much larger reduction of more than
2 orders [3]. Also, there is a large discrepancy between
the simulation results and the S23�2 curve near the mag-
netic axis, showing that the orbit squeezing effect needs to
be reformulated there. Our result is not compatible with
analytic transport calculations close to the axis [11], which
give ion heat flux � �q ? �r� ~ 1�r for the Gaussian tempera-
ture profile, or imply a profile flatter than Gaussian near
the axis.
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FIG. 5. Ion heat flux versus r�a for the large density gradient
plasma.

Future simulations allowing nonuniform initial toroidal
rotation will give more comprehensive Er dynamics and
spatial structure. The large scale neoclassical radial elec-
tric field with strong shear, like small scale turbulence-
generated zonal flow, is also believed to play an
important role in suppressing turbulence and associated
transport through �E 3 �B flow shear decorrelation. This is
a topic of ongoing research [12].
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