
VOLUME 87, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 30 JULY 2001

054
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
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We report direct measurements of hydrodynamic drainage forces, which show clear evidence of bound-
ary slip in a Newtonian liquid. The degree of boundary slip is found to be a function of the liquid viscosity
and the shear rate, as characterized by the slip length, and is up to �20 nm. This has implications for
confined biological systems, the permeability of microporous media, and for the lubrication of nano-
machines, and will be important in the microcontrol of liquid flow. We also show that current theories
of slip do not adequately describe the experimental data.
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Fluid mechanics is one of the oldest and most useful of
the “exact” sciences. For hundreds of years it has relied
upon the assumption that when liquid flows over a solid
surface, the liquid molecules adjacent to the solid are sta-
tionary relative to the solid [1,2]. This is the no-slip bound-
ary condition and is applied successfully to model many
macroscopic experiments. However this success may not
always reflect the accuracy of the boundary condition but
may in fact reflect the insensitivity of the experiment to a
partial-slip boundary condition. Measurements using fine
capillaries have been interpreted as indicating boundary
slip [3]. Boundary slip will become important only when
the length scale over which the liquid velocity changes ap-
proaches the slip length, that is only when the liquid is
highly confined. The slip length, as defined by Brochard
and de Gennes [4], is the distance behind the interface
at which the liquid velocity extrapolates to zero. The
slip boundary condition is suggested in several molecu-
lar dynamics simulations [5–8] and is acknowledged in
non-Newtonian fluids [9–12], at the interface with a gas
[13,14], and in the special case where a monolayer of C60
molecules is present at the interface [15]. Recently a study
reporting slip at the interface with a hydrophobic surface
in a nonaqueous Newtonian fluid has been published [16].
We demonstrate here, through direct measurement of the
drainage force, that slip is also detectable in an aqueous
Newtonian fluid bounded by relatively hydrophilic solid
surfaces, and that the degree of boundary slip is shear
dependent.

The hydrodynamic drainage force on a silica sphere
(radius 10.4 6 0.1 mm) approaching a flat wall (mus-
covite mica) perpendicularly in a viscous liquid has been
measured using a Nanoscope III Atomic Force Micro-
scope (Digital Instruments). Both the sphere and the mica
are gold coated �15.1 6 0.2 nm� using a layer of titanium
�7.7 6 0.2 nm� to promote adhesion. The gold surfaces
(roughness 0.56 nm rms over 1000 nm 3 1000 nm) are
then treated with a mixture of 10 mM 11-mercapto-1-
undecanol and 10 mM 1-dodecanethiol (20% dode-
canethiol) in ethanol to produce a chemically bound
self-assembled monolayer. The metal coatings and the
504-1 0031-9007�01�87(5)�054504(4)$15.00
self-assembled monolayers are depicted in the inset of
Fig. 1 (not to scale). The resulting advancing and receding
contact angles of water on these surfaces are uadv � 70±,
urec � 40±. This arrangement provides some control over
the wettability and roughness of the surface. The sphere
is attached to a fine cantilever spring �0.115 N m21� [17]
following the method of Ducker et al. [18] enabling the
drag force to be quantified. The drive rate and surface
separation are accurately controlled using a piezoelectric
transducer. The piezodrive rate is the velocity at which the
substrate moves, and it is not equivalent to the approach
rate of the surfaces. In fact the sphere is deflected away
from the flat surface by the repulsive hydrodynamic
drainage forces, so that the approach rate between the
surfaces is progressively reduced (see inset, Fig. 3). Note
that in Figs. 2–5 the theoretical curves are generated
using the approach velocity derived from the experiments,
so the noise in the theoretical curves is due to the noise
in the approach velocity. Aqueous solutions of sucrose
(BDH, AR) of varying concentration whose temperature
has been equilibrated at 20 ±C before each measurement
are used as Newtonian viscous liquids.

We compare the experimental results to the existing
theoretical models. The first is an exact calculation of

FIG. 1. Schematic representation of the employed sphere-
plane system. The sphere of radius r is separated from the flat
surface by h at the point of closest approach.
© 2001 The American Physical Society 054504-1
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Brenner [19] for the no-slip boundary condition; the hydro-
dynamic force exerted on a sphere of radius r approaching
a flat surface perpendicularly with a velocity V is given by
Fh � 6phrVl, where h is the bulk dynamic viscosity
and l is a function of the ratio of the sphere radius �r� to
the distance of its center from the flat surface [19]. The sec-
ond is a calculation allowing for slip at the solid boundary
by Vinogradova [20–22]. In this model the hydrodynamic
drag force exerted on a sphere of radius r approaching
a flat surface at a distance h (as depicted in Fig. 1) with
approach velocity V is Fh �

6pr2hV
h f�, where f� is the

correction factor for slip for two surfaces with the same
slip length b:
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This model is accurate for low Reynolds numbers and for
small surface separations �h , r�. Both these approxima-
tions are valid for our measurements.

In using the Brenner model there are no adjustable pa-
rameters, as all the parameters (sphere radius, liquid vis-
cosity, and spring constant) are known by independent
measurement. In using the Vinogradova model we require
a new parameter, the slip length. This is adjusted to give
the best fit to the experimental data. In Fig. 2 the mea-
sured hydrodynamic drainage force is fitted with the Bren-
ner theory and good agreement is found, indicating that the
no-slip boundary condition is applicable. However, when
the approach rate of the surfaces or the viscosity is in-
creased the Brenner theory is unable to describe the experi-
mental data. Typical experimental results, along with the
theoretical models, are shown in Figs. 3 and 4. Note that
in Fig. 3 the calculated maximum shear rate is 8000 s21

at a separation of 40 nm and 160 s21 at a separation of
700 nm; therefore the sucrose solutions behave as Newto-
nian fluids. The crucial point is that at higher viscosities
and shear rates the no-slip theory does not fit the experi-
mental results. The error bars in Fig. 3 are calculated for
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FIG. 2. Measurements of the hydrodynamic drainage force in
a sucrose solution. The piezodrive rate is 2400 nm�s and the
viscosity of the sucrose solution is 27.0 mPa s. The experimental
data (circles) are presented together with the Brenner theory
prediction (empty squares).
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the no-slip theory allowing for an error of 62 mPa s in
the solution viscosity (i.e., about 62 ±C on the tempera-
ture of the solution) and an error of 60.2 mm on the ra-
dius of the sphere. They illustrate how an improved fit of
the no-slip theory cannot be made if the known parame-
ters are made “adjustable.” An improved fit to the data is
obtained when slip is permitted. This is shown clearly in
Fig. 5, where the force is plotted versus the inverse of the
surface separation. This type of graph highlights the dif-
ferent behavior of the no-slip and the slip theories at small
separations. The Brenner theory results in a nearly linear
plot, while the Vinogradova theory and the experimental
data show substantial deviations from linearity. We can
conclude that there is evidence of boundary slip, and we
can quantify this slip using the slip length which best fits
the data. This slip length does not fully specify the state of
the system, since the current theories are incomplete, but it
does allow the general physical trends within our system to
be determined. The slip lengths obtained for a number of
approach speeds and viscosities are shown in Fig. 6. The
main conclusion is that the slip length depends nonlinearly
on the driving rate. In the theory of Vinogradova the drag
force is proportional to the approach rate. Our experiments
show this is not the case. A very recent report of slip [16]
found no dependence on the shear rate, but this may be
due to the limited accuracy with which the slip length can
be determined. A complete theory of boundary slip would
incorporate a shear-rate dependent term. Recent measure-
ments of boundary slip in non-Newtonian liquids have led
Horn et al. [9] to the same conclusion. Furthermore a de-
pendence on the solution viscosity is also observed. This
is in agreement with the approach of de Gennes [4] and
Vinogradova. The occurrence of slip in aqueous Newto-
nian fluids considerably complicates flow predictions in
confined Newtonian systems. We now need to know not

2.0

6.0

10.0

14.0

18.0

0 100 200 300
Separation (nm)

F
o

rc
e 

(n
N

)

0

1.2

0 900 1800
Separation (nm)

V
el

oc
ity

 r
at

io
 

FIG. 3. Measurement of the hydrodynamic drainage force in
a sucrose solution. The experimental data (empty triangles)
are presented together with the no-slip theory (circles, with
error bars) and the slip theory (line). The piezodrive rate
is 21 600 nm�s and the viscosity of the sucrose solution is
19.2 mPa s. The fitted slip length is 5 nm. In the inset we
report the ratio of the approach and drive velocity.
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FIG. 4. Measurement of the hydrodynamic drainage force in
a sucrose solution. The experimental data (empty triangles)
are presented together with the no-slip theory (circles, with
error bars) and the slip theory (line). The piezodrive veloc-
ity is 21 600 nm�s and the viscosity of the sucrose solution is
38.9 mPa s. The fitted slip length is 12 nm. In the inset the full
scale experimental data (solid line) and the full scale Brenner
theory (broken line) are presented.

just the viscosity but also some details of the surface-
liquid interaction. This complication is the price that must
be paid for accurate modeling of these systems.

In Fig. 7 we report the equilibrium surface forces in
these systems, measured by employing slow surface ap-
proach velocities �400 nm�s� such that the hydrodynamic
force is small. The measured surface forces are fitted using
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory,
employing a published algorithm [23] to solve the nonlin-
ear Poisson-Boltzmann equation. The DLVO force is cal-
culated for a surface potential of 32 mV, Hamaker constant
of 3.4 3 10220 J (Ref. [24]), and Debye length of 27 nm
for both the constant charge and constant potential bound-
ary conditions. The surface charge regulates between these
two extremes. The salt impurities in the sucrose are re-
sponsible for the low Debye length. The surface forces are
well described by DLVO theory. The equilibrium forces
are substantially smaller in magnitude and range than the
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FIG. 5. Hydrodynamic force versus inverse of separation. The
same data as in Fig. 4 are reported. The experimental force data
are divided by the velocity ratio (see Fig. 3) to allow comparison
with theories.
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FIG. 6. Slip length versus driving rate. The sucrose solutions
have viscosities of 19.2 mPa s (crosses), 38.9 mPa s (diamonds),
and 80.3 mPa s (triangles). The lines are included to guide
the eye.

dynamic forces. The dynamic measurements have not been
corrected for the equilibrium forces, as over the range at
which the slip length is fitted (greater than 50 nm), this
correction is negligibly small. The DLVO surface interac-
tion is not responsible for the deviation in force from the
no-slip boundary condition. If the equilibrium forces were
subtracted from the dynamic forces, the deviation of the
experimental data from the no-slip theoretical force would
increase.

Figure 6 demonstrates that the slip length is a function
of the approach rate and shows why several previous care-
ful measurements of confined liquids have not observed
evidence for boundary slip [25–27]. Under the low ap-
proach rates previously employed we expect the slip length
to be effectively zero and a no-slip boundary condition to
be applicable.

It has been proposed that boundary slip in aqueous sys-
tems is favored by hydrophobic surfaces [3,8,20–22,28]
as the attractive forces between the liquid and the solid
are less than for hydrophilic surfaces and consequently the
liquid-solid friction is decreased. Experimental evidence
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FIG. 7. Measurement of the typical equilibrium forces present
in the system. The surface forces (diamonds), measured at low
approach velocity in a 46% sucrose solution w�w, viscosity
10.2 mPa s, are fitted using the DLVO theory, for both the con-
stant charge (upper curve) and constant potential (lower curve)
boundary conditions.
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for a relationship between surface properties and slippage
exists [16], particularly in non-Newtonian systems [29].
Surface roughness may also play a role in boundary slip
[30]. It has been predicted to both increase [31] the de-
gree of slip and to decrease it [32]. Our system is ideally
suited to examine boundary slip as a function of surface
hydrophobicity and surface roughness. These studies are
now being pursued.

The relationship between the slip length and the ap-
proach velocity of the surfaces determines the type of sys-
tems that will exhibit boundary slip. “Free” systems, such
as a sphere approaching a wall under the action of a nega-
tive buoyancy force [33,34] or the approach of two col-
loidal particles, are unlikely to exhibit boundary slip as
the drainage force acts to reduce the relative velocity of the
surfaces considerably as the surface separation decreases.
We have shown that low relative velocities will not result
in boundary slip. Alternatively, “driven” systems, where
the approach rate of the surfaces remains high at small
separations, are more likely to exhibit slip. Generally, most
unconfined systems are more likely to be free, and this
may explain why boundary slip has not been previously re-
vealed in studies of the bulk behavior of colloidal systems.
Many systems can be described where boundary slip is
likely to occur and the effects are important. For example
our results suggest that red blood cells squeeze through
narrow capillaries more easily and induce less shear stress
on capillary walls due to boundary slip. An understand-
ing of the role of wetting, surface roughness, and wearless
friction in determining the degree of boundary slip has im-
portant consequences for the design of machines on the
micro- to nanoscale.

In conclusion, hydrodynamic forces generated in an
aqueous Newtonian fluid have been directly measured, re-
vealing that partial boundary slip is occurring. The degree
of slip is described by the magnitude of the slip length,
and it is found to be a function of both surface approach
velocity and fluid viscosity.
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