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Giant Deformations of a Liquid-Liquid Interface Induced by the Optical Radiation Pressure
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Because of the small momentum of photons, very intense fields are generally required to bend a liquid
interface with the optical radiation pressure. We explore this issue in a near-critical phase-separated liquid
mixture to vary continuously the meniscus softness by tuning the temperature. Low power continuous
laser waves become sufficient to induce huge stationary bulges. Using the beam size to build an “optical”
Bond number, Bo, we investigate the crossover from low to large Bo. The whole set of data collapses
onto a single master curve which illustrates the universality of the phenomenon.
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The interaction between a laser wave and a micrometer-
sized dielectric particle has attracted considerable interest
in recent years. While most advances were devoted to op-
tical levitation and trapping (for a recent review see, for
example, [1]), much less attention appears to have been
directed to the deformation of soft transparent interfaces
(such as liquid-gas menisci [2] or liquid droplets [3]) de-
spite its large field of practical applications [3–6]. High
beam intensities are nevertheless needed to deform classi-
cal liquid interfaces. The first investigations were therefore
prompted with laser pulses [2], but control over the spa-
tial and temporal profiles of the wave was not very accu-
rate, and secondary disturbing couplings such as nonlinear
effects, thermal expansion, or thermocapillary flows [7]
generally appear. Moreover, when observed, deformations
remain usually weak (typically �2 nm high for a water-air
interface when induced by a cw Ar1 laser with a beam
power P � 300 mW and a beam radius v0 � 140 mm
[4]) and indirect methods, such as induced lensing [2,4]
or interferometric holography [6], need to be implemented
for measurements.

On the other hand, these optical forces represent nowa-
days an appealing noncontact tool to probe locally the
micromechanical properties of soft biological systems be-
cause artificial membranes [8] or cells [9] can be highly de-
formable. Sizable effects of the radiation pressure should
then be measured leading to improvements in surface elas-
ticity characterization. Further developments of these new
horizons would therefore require an experimental investi-
gation from the low to the large surface tension regime
to present a universal description of the mechanisms that
govern the shape and the amplitude of the induced defor-
mations. This is the purpose of the present Letter.

Using a cw laser wave to bend the meniscus between
two liquid phases in coexistence close to a liquid-liquid
critical point, we show that huge stationary interface de-
formations of several tens of microns can be induced at
low beam power. Moreover, the continuous variation of
the surface softness by a scanning in temperature allows
a universal description of the phenomenon because it be-
comes possible to overlap the range of variation of the ex-
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citation and the hydrodynamic length scale, respectively,
given by the beam waist v0 and the capillary length lC .
New predicted behaviors are then seen to occur, particu-
larly the transition from a nonlocal to a local excitation of
the interface when the critical point is neared, and all the
data can be cast on a single master curve when rescaled
with an optical Bond number.

The experiment is performed in a near-critical water-
in-oil micellar phase of microemulsion. Its mass compo-
sition (water: 9%; sodium dodecyl sulfate: 4%; toluene:
70%; and n-butanol: 17%) has been chosen so as to be
critical at a temperature TC � 35C [10]. For a tempera-
ture T . TC the mixture phase separates in two micellar
phases of different micellar concentrations. Four main
reasons motivated our choice. (i) Close to the liquid-liquid
critical point, this micellar phase belongs to the univer-
sality class (d � 3, n � 1) of the Ising model [10]; very
general conclusions can thus be devised by our investi-
gation. (ii) The amplitude of the correlation length of
density fluctuations is intrinsically large in supramolecu-
lar liquids: in the one-phase region of our mixture j1 �
j

1
0 j1 2

T
TC
j2n , with j

1
0 � 40 6 2 Å and n � 0.63.

Consequently the critical amplitude s0 of the surface
tension is very weak compared to that of usual liquid mix-
tures (s � s0j1 2

T
TC
j2n with s0 �

kBTCR1

�j1
0 �2 and R1 �

0.39 [11]). (iii) The refractive index contrast between
the coexisting micellar phases is important in the chosen
microemulsion. (iv) Finally, the very weak residual
absorption of the mixture at the wavelength used and the
low incident beam powers needed to observe the interface
bending prevent any disturbing thermal coupling and
nonlinear effect [10].

A schematic of the experiment is presented in Fig. 1.
The mixture is enclosed in a temperature controlled paral-
lelepipedic fused quartz cell (optical path of 1 mm, 1 cm
wide), and the working temperature T is chosen above TC

to reach a two-phase equilibrium state. Since the density
of water is larger than that of toluene, the high micellar
concentration phase F1 is located below the low micel-
lar concentration phase F2 in the gravity field �g. The
deformation of the flat meniscus is driven by a linearly
© 2001 The American Physical Society 054503-1
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FIG. 1. Optical bending of the meniscus of a phase-separated
liquid mixture induced by the radiation pressure. The laser beam
is represented by the arrows.

polarized cw Ar1 laser in the TEM00 mode (wavelength
in vacuum l0 � 5145 Å propagating vertically from F1

to F2 along the z axis. The wave is weakly focused on
the interface by a 103 microscope objective. Thus the
beam profile has almost a cylindrical symmetry around
the z axis and close to the meniscus the z variation of
the beam intensity I�r, z� can be neglected, leading to
I�r, z� � I�r� �

2P
pv2

0
exp� 22r2

v2
0

� where P is the incident
beam power. The beam waist v0 can also be changed by
adjusting the distance between a first lens (f � 200 mm)
and the 103 objective. Relative errors on P and v0 are,
respectively, �P

P # 5% and �v0

v0
# 5%.

Since the refractive index n2 of the phase F2 is larger
than n1 of F1 (the refractive index of water is smaller
than that of toluene), the light momentum in F2 is larger
than that in F1. This light momentum discontinuity at
the interface gives birth to a radiation pressure directed
towards the coexisting phase of lower refractive index, i.e.,
F1 in our case. As a result, the radiation pressure acts
downwards (see Fig. 1) and should be compensated by the
Laplace and the buoyancy forces. Then, at steady state
and for a small curvature of the bending, the height of the
resulting stationary deformation h�r� is described by [12]

�r1 2 r2�gh�r� 2 s �=2h�r� �
2n1

c

µ
n1 2 n2

n1 1 n2

∂
I�r� ,

(1)

where r1 and r2 are the densities of the phases F1 and
F2, and c is the light velocity in vacuum. The right-hand
side term in Eq. (1) represents the radiation pressure prad
at the interface. A typical evolution of h�r� for increasing
beam power P is presented in Fig. 2.

Assuming ��
2
h�r� � h

v
2
0
, the ratio between the buoy-

ancy and the Laplace restoring forces defines an optical
Bond number Bo � � v0

lC
�2, where lC �

p
s�� r1 2 r2�g

is the capillary length. This definition simply means
that the induced bulge can be viewed as a sort of virtual
particle of length scale v0. For optical bending of
classical free surfaces Bo ø 1 and gravity is negligible.
Then one finds

h�r � 0�Boø1 �

µ
≠n

≠r

∂
T

1
4pg

ln

µ
g

v
2
cl

v
2
0

∂
P

l2
C

, (2)
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FIG. 2. Variation of the optical bending for increasing beam
power: (a) P � 270 mW, (b) 540 mW, (c) 810 mW. (d) Theo-
retical profiles (full lines) calculated from Eq. (4). The control
parameters are v0 � 14.6 mm and �T 2 TC� � 2 K.

where g � 1.781 is the Euler constant and vcl is a ra-
dius large compared to v0 that defines the boundary con-
dition h�r � vcl�Boø1 � 0. We have also assumed here
that n1 � n2 and �n1 2 n2� � � ≠n

≠r �T �r1 2 r2� because
F1 and F2 are coexisting phases of close compositions.
Equation (2) shows that the deformation strongly depends
on lC rather than v0: the response of the interface to

the radiation pressure is thus nonlocal [i.e., ��
2
h�r� ~

I�r�]. Data should therefore be plotted versus P
l2
C

to point

out a single-scaled behavior, rather than prad�r � 0� ~
P
v2

0

used generally [2]. In our case, this behavior can be ob-
served experimentally using a narrow beam excitation in
the two-phase sample far from criticality. The expected
scaling is illustrated in Fig. 3 for large values of �T 2 TC�.
For a comparison the inset shows the dispersion of the
same data when plotted versus P

v2
0
. Since the relative error

on j
1
0 is �j1

0

j1
0

� 5% and �T 2 TC� is regulated at better

than 0.1 K, we deduce �l2
C

l2
C

# 11% for �T 2 TC� $ 8 K;

measurements give �h
h # 10%.

On the other hand, when Bo ¿ 1 the Laplace force
becomes negligible and the height of the deformation is
simply given by

h�r � 0�Bo¿1 �

µ
≠n
≠r

∂
T

1
cg

I�r � 0� . (3)

The optical excitation of the interface induced by the ra-
diation pressure becomes local [i.e., h�r� ~ I�r�]. Data
should therefore be plotted in P

v2
0

to obtain a scaled de-
scription of the height of the bulge. This behavior, which
seems to have never been analyzed before, is, in fact, diffi-
cult to observe. The main reason is that experiments should
be realized with large beam radii, but in such conditions
the beam intensity decreases drastically and the deforma-
tion becomes too weak to be accurately detected. Besides
054503-2
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FIG. 3. Experimental variation of the height of the deformation
for low optical Bond numbers. The single-scaled behavior pre-
dicted by Eq. (2) is clearly evidenced. Inset: same data when
plotted versus P

v
2
0
. The control parameters are v0 � 6.3 mm

and �T 2 TC� � 8 K �≤�, 10 K ���, 15 K ���, 20 K ���, and
25 K ���.

a strong increase in beam power generally initiates dis-
turbing nonlocal couplings like thermal effects [7]. With
near-critical phase-separated liquid mixtures, the situation
is more comfortable because the capillary length vanishes
when approaching the critical point. Then, the transition
towards the negligible surface tension limit can be inves-
tigated. Using large beam waists at �T 2 TC� � 1.5 K,
Fig. 4 shows that the slope of h�r � 0� versus P

v2
0

increases
for increasing Bo and reaches progressively a finite value
for Bo . 1. This behavior is clearly evidenced by the two
largest Bo presented.

To analyze more quantitatively the universal be-
havior of optical bending of soft interfaces we solved
Eq. (1). Introducing the Fourier-Bessel transform
h�r� �

R`
0

eh�k�J0�kr�k dk [2], where J0�x� is the 0th
order Bessel function, one finds

h�r� �

µ
≠n
≠r

∂
T

P
2pcg

Z `

0
J0�kr�

exp�2k2v2
0

8 �
1 1 k2l2

C
k dk . (4)

The nice feature from Eq. (4) is that h�r � 0� can be
derived analytically [13] in a universal form of the
Bond number:

h�r � 0� � �h�r � 0��Bo¿1 3 F�Bo� , (5)

where F�x� �
x
8 exp� x

8 �E1� x
8 �, E1�x� is the exponential in-

tegral function, and �h�r � 0��Bo¿1 is given by Eq. (3).
The remarkably simple form of Eq. (5) provides a natu-
ral scaling for presenting the data. The whole set of ex-
periments should be brought onto a single master curve
when expressed with the reduced variables Bo and H �
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FIG. 4. Experimental variation of the height of the deformation
for optical Bond numbers increasing from the intermediate to
the large Bo regime. The predicted scaling given by Eq. (3) for
Bo ¿ 1 is illustrated by the full line. The control parameters
are �T 2 TC� � 1.5 K and v0 � 10.6 mm �>�, 14.6 mm �±�,
21.2 mm ���, 25.3 mm ���, 29.3 mm ���, and 32.1mm �≤�.

h�r�0�
�h�r�0��Bo¿1

. Figure 5 presents this data rescaling for a very
wide region of the parameter space: 0.06 # P # 1.2 W,
5.3 # v0 # 32.1 mm, 1.5 # �T 2 TC� # 25 K, corre-
sponding to almost three decades in optical Bond num-
ber in a range including Bo � 1. Using the estimation

of �l2
C

l2
C

given above, the error on Bo is �Bo
Bo # 15% for

�T 2 TC� $ 1.5 K; measurements lead to �H
H # 8%. All

the data are closely distributed around the solid line which
represents the scaling function F�Bo�. For given v0 and
�T 2 TC�, each point is deduced from the slope value of
the linear variation of h�r � 0� versus I�r � 0�. The
only free parameter � ≠n

≠r �T is obtained by fitting in the
least squares sense the full set of experimental points. We
find � ≠n

≠r �T � 21.22 3 1024 m3 kg21, a value somewhat
larger than that expected from the Clausius-Mossotti re-
lation [� ≠n

≠r �T � 26.1 3 1024 m3 kg21]. For the sake of
comparison, the datum given by Sakai et al. [4] for the
water-air free surface at room temperature (H � 1.9 3

1023,Bo � 2.7 3 1023) is also illustrated in the inset of
Fig. 5. It shows that the universal scaling function F�Bo�
makes predictable the height of the laser-induced deforma-
tion, whatever the liquid interface is.

Finally Eq. (4) was used to compare predictions with the
entire profile of the stationary deformation h�r� measured
experimentally. Considering the value of � ≠n

≠r �T obtained
above, Fig. 2 shows that the expected bendings fairly re-
produce observations. The measurement of h�r � 0� is
thus sufficient to completely describe the shape distortion
induced by the radiation pressure.
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FIG. 5. Experimental variation of the dimensionless height of
the deformation H�Bo� versus the optical Bond number. The
solid line represents the universal scaling function F�Bo� given
in Eq. (5). Inset: log-log plot overview, which also shows the
location of the datum (full square) given in Ref. [4] for the
water-air free surface.

In conclusion, the good agreement observed between
the scaled function F�Bo� and our measurements — and
others on free surfaces —clearly validates the universal
description of the process, and provides a new example of
the convenience offered by critical phenomena to explore
hydrodynamic instabilities and pattern formation [14].
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