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The influence of chemical reactions on the hydrodynamical fingering instability is analyzed for mis-
cible systems in porous media. Using a realistic reaction scheme, it is shown that the stability of chemical
fronts towards density fingering crucially depends on the width and the speed of the front which are
functions of chemical parameters. The major difference between the pure and chemically driven fingering
is that, in the presence of chemical reactions, the dispersion curves do not vary in time which has
important practical experimental consequences. Good agreement with recent experimental data is found.
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Fingering of an interface is a common phenomenon en-
countered in fields as diverse as petroleum recovery [1],
combustion [2], electrochemical deposition [3], reaction-
diffusion systems [4–6], etc. Because of the influence of
such fingers on the physical and chemical processes, nu-
merous studies have analyzed to what extent the fingering
instability can be affected, for instance, by heterogeneities
of the medium [7], the non-Newtonian character of flows
[8], particle accretion [9], the presence of a magnetic field
[10], etc.

In this Letter, we show that chemical reactions pro-
foundly affect the fingering of an interface. To do so,
the stability of a chemical front towards buoyancy effects
is studied for miscible systems in a porous medium or
Hele-Shaw cell. The chemical reaction can diminish the
local density causing ascending fronts to be buoyantly un-
stable giving rise to complex fingering phenomena. The
buoyancy-driven instability of reaction-diffusion fronts has
already been studied in laterally extended systems both
experimentally [11,12] and theoretically [13–18]. At-
tempts to compare such theories with recent experiments
do not, however, provide good agreement [12]. We show
here that the stability towards fingering of such interfaces
undergoing chemical reactions depends crucially on the
width and the speed of the front which are functions of
the chemical parameters. This changes dramatically our
understanding of the coupling between chemistry and hy-
drodynamical instabilities and suggests a new interpreta-
tion of experiments.

Our system is an infinite two-dimensional porous
medium with the gravity field g oriented along x (Fig. 1).
In this system, a solution of concentration c1 and density
r1 is the steady state of the reaction-diffusion system
which invades a different steady state above it with speed
y. In the upper region, the concentration is taken without
loss of generality to be equal to zero and the density
is r0 . r1. The system can be described by Darcy’s
equations (1)–(2) for the velocity field u coupled to an
advection-reaction-diffusion equation (3) for c [4,19]:
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Here the viscosity m, permeability k, and diffusion coeffi-
cient D are constant while p represents the pressure. The
density r is assumed to depend linearly on the local con-
centration c of the solute as r�c� � r1 1 �ro 2 r1� �1 2

c�c1�. In writing (2), we make use of Boussinesq’s ap-
proximation assuming that changes in density can be ne-
glected everywhere except in the buoyancy term rg in
Darcy’s law [19]. The reaction term is chosen as a simple
kinetic expression allowing chemical fronts between two
steady states [20–22]. The kinetic constant g and the con-
centrations c1 and c2 of the model can be explicit in terms
of experimental parameters as is shown later for a specific
example. The hydrostatic pressure r1g can be incorpo-
rated in the pressure term if we define =p� � =p 2 r1g.
To nondimensionalize the equations, we define a charac-
teristic speed U � Drgk�n, where Dr � �r0 2 r1��r0
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FIG. 1. Sketch of the system.
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and n � m�r0 is the kinematic viscosity. As characteristic
length and time scales, we use, respectively, L � D�U
and t � D�U2. We then introduce the nondimensional
variables x0 � x�L, y0 � y�L, u0 � u�U, t0 � t�t, p0 �
p�k�mD, r0 � r�r0, c0 � c�c1 where now 0 # c0 # 1.
As the chemical front is moving upwards with velocity y

in the direction of negative x, we next switch to the moving
frame z � x0 1 yt0. Dropping all the primes, the dimen-
sionless evolution equations become

= ? u � 0 , (4)

= p � 2u 1 �1 2 c�e x , (5)

≠c

≠t
1 y

≠c

≠z
1 u ? =c � =2c 2 ac�c 2 1� �c 1 d� ,

(6)

where d � c2�c1. The dimensionless kinetic constant
a � Dgc2

1�U2 is the ratio between the dispersive time
scale and the chemical time scale, i.e., the Damköhler num-
ber. The system of equations (4)–(6) admits as a base state

c0 � c0�z, t� , (7)

u 0 � 0, p0 � p0�z, t� , (8)

where p0�z, t� is the base profile of pressure, solution of
Eq. (5) for the given concentration profile c0�z, t�. Lin-
earizing equations (4)–(6) around the base state (7) and
(8) and expanding the perturbations in Fourier modes as
�u1, w1, p1, c1� � �du, dw, dp,dc� �z, t0�eikyest, we get,
after eliminating w1 and p1,∑

d2

dz2 2 k2

∏
du � k2dc , (9)

∑
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2 s 2 k2
∏
dc �
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where s is the growth rate of the perturbations and k
is their wave number while the subscript zero means
computed for c � c0�z, t�. The perturbations du and
dc tend to zero as z ! 6`. Equations (9) and (10) are
two coupled ordinary differential equations defining an
eigenvalue problem for s whose solution will give
the dispersion relation s � s�k�. In most cases, the
eigenvalue problem cannot be solved analytically and we
therefore resort to numerical simulations. To do so, we
perform initial value integration of Eqs. (9) and (10)
expressed in the stream function formalism [19] using
a pseudospectral numerical scheme [4,23]. Matching
the growth in time of each Fourier mode of c by an
exponential gives the growth rate s for each wave number
k. The problem is independent of any Rayleigh number
and depends only on the two chemical parameters a and d
controlling the width and the velocity y of the wave. This
result is in sharp contrast with some previous theoretical
work [15,16,18] which assume a flat front and express
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all results in terms of a Rayleigh number Ra � Ua�D
constructed with the gap width a of a Hele-Shaw cell.
These works do not explain the influence of chemical
parameters on the stability of the front [12] which is
non-negligible as we show next in a parametric study.

Let us first analyze the a � 0 limiting case of pure
density fingering without chemical reactions. The base
concentration profile is then given by

c0�z, t� �
1
2

∑
1 1 erf

µ
z

2
p

t

∂∏
. (11)

The width of the front increases diffusively in time due to
the mixing of the two miscible solutions. At time t � 0,
the concentration profile (11) takes the form of a step func-
tion. Following the reasoning of Tan and Homsy [24,25],
we find analytically in this limit

s �
k

2
�1 2 k 2

p
k2 1 2k�, for a � 0, t � 0 .

(12)

This dispersion relation is that for viscous finger-
ing [24] in the special case where the mobility ratio
R � ln�m2�m1� � 1 stressing the similarity between
viscous and density fingering [26]. The band of unstable
modes admits a cutoff wave number kc � 1�4 and a most
unstable mode with km � 0.118 and sm � 0.0225. This
is coherent with numerical results by Vasquez et al. [18].
At later times, the base state profile c0�z, t� evolves
according to expression (11) and the dispersion curve is
obtained numerically. Figure 2 shows that the dispersion
curves for a � 0 feature a range of unstable modes and a
maximum growth rate that decrease in the course of time
because of a diffusive stabilization of the system when
the two solutions start to mix.

For a fi 0, the reaction-diffusion system (6) with
u � 0 admits several front solutions depending on the

FIG. 2. Dispersion curves in dimensionless variables obtained
for d � 0.0021 and variable a, i.e., varying both the width and
the velocity of the chemical front. The dashed and dotted curves
are the dispersion curves for pure density fingering (a � 0) at
times t � 0 and t � 150, respectively.
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parameters [27]. We analyze here the “pushed” front
solution for which an analytical expression exists [21]:

c0�z� �
1

1 1 e2
p

a�2 z
, (13)

where the chemical front speed y �
p

a�2 �1 1 2d�.
The width of the front is constant in time and is inversely
proportional to a; hence the higher a, the steeper and
the more rapid the chemical front. The a ! ` limit of a
step function front is not well defined in Eq. (10) as the
step function is not a physical solution of the reaction-
diffusion equation. We therefore resort to numerical
calculations to find the dispersion curves comparing the
situation with and without chemical reactions in Fig. 2.
An important difference between the pure and chemically
driven fingering is that chemical reactions maintain the
width of the front constant in time and hence the disper-
sion curves for a fi 0 do not vary in time. This means
that dispersion curves are likely to be measured experi-
mentally with more accuracy for fingering of asymptotic
chemical fronts than for pure density fingering for which
initial condition and time of measurement are important.
Initial conditions may remain important, however, if the
chemical front is established only after a transient. For
the value of d chosen here, the curves for the chemical
fingers are systematically above the initial time limiting
case (12) for pure fingering. Reactive fingers are thus
here more unstable than their nonreactive equivalent for
the same density ratio. Note that, at fixed d, an increase
in the dimensionless kinetic constant a (and hence of the
velocity y) leads to a more unstable situation (Fig. 2).
This means that sharper waves traveling with a larger
velocity will develop fingers with a larger growth rate.
This can be understood as an increase of a sharpens
the chemical front counterbalancing the stabilization by
diffusion. Increasing a also leads to smaller wavelengths
which is likely to favor tip splittings in the nonlinear
regime.

Let us now keep a constant while increasing d. As
can be seen in Fig. 3, this leads to a stabilization of the
waves. This can be understood as such a variation of
parameters results in an increase of the velocity of the
wave while keeping its width constant, i.e., decreasing
the overall destabilizing force. Note furthermore that, for
the set of parameters of Fig. 3, the growth rate of the
chemical fingers is smaller than the initial growth rate of
pure density fingering, indicating that the relative stability
of the pure and chemical fingers is strongly dependent on
the �a, d� couple of parameters.

We now compare quantitatively our predictions with
experimental dispersion curves obtained recently by Böck-
mann and Müller on the buoyancy fingering of iodate-
arsenious acid (IAA) reaction-diffusion fronts in a
Hele-Shaw setup [12]. The IAA reaction can quantita-
tively be modeled by Eqs. (1)–(3) and (13) with c � �I2�,
c1 � �IO2

3 �0, c2 � ka�kb, g � kb�H1�2, where ka and
kb are kinetic constants [20,22].
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FIG. 3. Dispersion curves in dimensionless variables keeping
a � 0.1 and varying d, i.e., keeping the width of the wave
constant and increasing its velocity. The dashed and dotted
curves are as in Fig. 2.

As experimental data [28], we use Dr � 1.30 3 1024

and a gap width a � 0.46 mm with the permeability k �
a2�12 for which we get d � 0.0021 and a � 1.71. While
previous theoretical dispersion curves obtained by neglect-
ing the effect of the width of the front [15,16] are off by
more than 50% [12], our dispersion curve is in good agree-
ment with experimental data (see Fig. 4). The compari-
son should be made for the band of modes with positive
growth rates as the experimental data points with negative
growth rates have an experimental low reliability as ex-
plained in [12]. Note that the experimental data are given

FIG. 4. Dispersion curves in the dimensionless growth rate
v � Ra2s�Sc and wave number q � Ra k used in Ref. [12],
where Sc � n�D is the dimensionless Schmidt number. Ex-
perimental data are shown as dark circles. The dashed and dot-
ted curves are the pure density fingering dispersion relations
(a � 0) corresponding to dimensional times of 200 and 480 s,
respectively, which delimit roughly the time interval used in ex-
periments for growth rate determination [29]. The solid curves
are the dispersion curves when chemical reactions are taken
into account using Dr � 1.30 3 1024 and a � 0.46 mm (1);
a � 0.48 mm (2); a � 0.50 mm (3).
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FIG. 5. Effect of the density difference on the dispersion
curve. The dimensionless variables are the same as in Fig. 4.
Dr � 1.30 3 1024 (1); 1.40 3 1024 (2); 2.00 3 1024 (3) for
a � 0.50 mm.

for a � �0.50 6 0.05� mm [29]. Figure 4 shows that the
theoretical dispersion curve is very sensitive to the value of
the gap width [12] as the dimensionless parameter a scales
like a24 for a Hele-Shaw cell. The best fit is obtained
with a � 0.46 mm which is in the experimental range of
a. Uncertainty also exists regarding the values of Dr (and
hence of a) which lie in the range from 1.30 3 1024 to
2.00 3 1024 [12,29,30]. Figure 5 indicates that theoreti-
cal curves are in better agreement with experimental data
for the lowest bound of this range of density ratios.

Let us recall that for the IAA reaction, a �
�H1�2�IO2

3 �2
0 while d � �IO2

3 �21
0 . Based on our previous

parametric study in dimensionless variables of Figs. 2 and
3, we understand that an increase of pH in the IAA reac-
tion keeping all other parameters constant (i.e., increasing
a while keeping d constant) should give sharper waves
traveling with a larger velocity and developing fingers
with a larger growth rate and smaller wavelengths [14].
Diminishing �IO2

3 �0 keeping the product �H1�2�IO2
3 �2

0
constant (i.e., increasing d for a fixed a� should on the
contrary lead to a stabilization of the waves.

In conclusion, we have shown that chemical reactions
quantitatively affect the stability criteria of the density fin-
gering instability. Good agreement with experimental dis-
persion curves is obtained. Experimental conditions to test
the effect of pH and other concentration changes on the
stability towards fingering of iodate-arsenious acid reac-
tion fronts are proposed.
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