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Many studies have shown that nonintegrable systems with modulational instabilities constrained by
more than one conservation law exhibit universal long time behavior involving large coherent structures
in a sea of small fluctuations. We show how this behavior can be explained in detail by simple thermo-
dynamic arguments.
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Many dynamical systems (e.g., self-focusing optical
waves in Kerr-nonlinear media [1], Langmuir waves in a
plasma [2], spurious large amplitude fluctuations which
destroy numerical algorithms for partial differential equa-
tions (pde’s) [3,4]) exhibit a type of universal behavior in
which high peaks of some field emerge from a low ampli-
tude noisy background. The formation of these coherent
structures is radically different in integrable and noninte-
grable systems. In the integrable systems such as the 1D
nonlinear Schrödinger (NLS) equation [5], spatially perio-
dic arrays of solitarylike pulses return periodically in time
to their original states reflecting the regular phase space
structure of nested tori. In the nonintegrable systems, these
periodic arrays themselves undergo a second instability
again of phase type, essentially due to a breakdown of
Kolmogorov Arnold Moser tori. The subsequent Arnold
diffusion corresponds to the fusing of solitary wave peaks
[6,7]. The system eventually settles down to a stationary
state characterized by robust coherent structures immersed
in a sea of radiated wavelike fluctuations. In this Letter,
we show that such states are the most likely solutions for
systems with additional integrals corresponding to sur-
viving symmetries, such as total particle number, angular
momentum, or magnetization. Simple thermodynamic
considerations explain that an increase of the entropy of
the sea of wavelike fluctuations under these constraints
requires the formation of coherent structures and give
predictions which agree closely with the results of simula-
tions. The observed behavior is common in a huge equiva-
lence class of nonintegrable systems with constraints, and
we use the Heisenberg spin chain [8] as a representative
model. The Landau-Lifshitz equation,

�Sn � Sn 3 �J�Sn21 1 Sn11� 1 Snzez� , (1)

with Hamiltonian H �
P

n
1
2 �1 2 S2

nz� 1 J�1 2 SnSn11�
is a classical approximation of the dynamics of magnetic
moments Sn � �Snx , Sny, Snz� on a set of lattice sites n.
Large amplitude solutions are bounded since the vector
S of the local magnetization is restricted to a sphere
jSj � 1. The lattice constant as a lower bound of possible
wavelengths avoids leakage of energy to infinitesimally
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small space scales. The z axis is a symmetry axis of
the Hamiltonian and therefore the total z magnetization
Mz �

P
n Snz is also conserved. The spin chain (1) may

be regarded as an extension of the NLS equation, since,
for ferromagnetic coupling J . 0, it can be approximated
by the discrete focusing NLS-equation i �fn 1 J�fn11 1
fn21 2 2fn� 1 jfnj

2fn � 0 in the limit of low-
amplitude solutions. Both systems are nonintegrable even
in one dimension and show very similar self-focusing
behavior. In numerical simulations of a chain of 512 spins
with periodic boundary conditions, we observe the self-
focusing instability of the homogeneously magnetized
state precessing about the z axis with the frequency
v � Sz . A small perturbation leads in about 60 time
units to a solution which, initially, is almost periodic
in time and space. In Fig. 1, we plot the peaks (the
sites where the spins differ most from the north pole)
as a function of time. Figure 2 shows that initially
�t , 200� energy is transferred periodically between the
anisotropic Ha �

P
n

1
2 �1 2 S2

nz� and the coupling part
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FIG. 1. Integration of 512 spins (J � 0.4) with periodic
boundary conditions over 2000 time steps with a weakly
perturbed homogeneous initial condition (Sz �

p
0.84 ). Lattice

sites where the spins deviate significantly from the north pole
(Sz , 0.8) are marked with dots. A similar pattern is obtained
for the discrete focusing NLS.
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FIG. 2. Share of coupling energy and anisotropic energy over
2000 time steps.

HJ �
P

n J�1 2 SnSn11� of the Hamiltonian. After
another 150 time units, the second long wave phase
instability [9–11] caused by the breakdown of periodic
orbits of the almost periodic state is evident, and several
peaks gradually move towards each other. After 250 time
units, several of these peaks fuse and give rise to even
larger ones whose spins deviate significantly from the
north pole alignment. This Arnold diffusion phase (see
Fig. 2, 250 , t , 1500) coincides with an irreversible
transfer of energy to the coupling part of the Hamiltonian
and corresponds to an increase of high wave number
fluctuations as the sea of spin waves near the north pole
explores more and more of phase space. This process
continues until the spins of some site domains are gathered
close to the south pole leaving the other spins with small
amplitudes near the north pole. Eventually, six xenocrysts
of the south pole spins are pinned to the lattice and the
energy transfer stops. Simulations through 200 000 time
steps indicate a quasiequilibrium state with no further
mergings on relevant time scales.

We describe the thermodynamic equilibrium resulting
from this merging process by using a self-consistent ap-
proximation of the Hamiltonian. Since numerics indicates
that eventually the spins deviate very little from the poles,
the relevant part of the Hamiltonian in this state is a combi-
nation of coupled harmonic oscillators �Snx , Sny� and Ising
spins sn � 61,

Heff � Hw�Snx , Sny� 1 HI �sn�

�
X
n

1
2

�S2
nx 1 S2

ny� 1 J�S2
nx 1 S2

ny�

2 J�SnxSn11x 1 SnySn11y� 2 Jsnsn11 . (2)

Spins near the north or south pole are approximated as
Snz � sn�1 2

1
2 �S2

nx 1 S2
ny ��. This approximation ne-

glects the coupling of the oscillators Snx�y to the Ising spin
sn by assuming that snsn11 � 1 holds for almost all n;
i.e., the domain walls contain little energy. In this limit,
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the magnetization, which is an exact second integral of
motion, may be approximated as

Meff � MI �sn� 1 Mw�Snx , Sny�

�
X
n

sn 2
1
2

�S2
nx 1 S2

ny� , (3)

since we have observed that most of the spins point to
the north pole. Again this approximation neglects higher
order terms in Sx�y and the fluctuations snS2

x�y near the
south pole sn � 21. Domains with sn � 21 represent
the coherent structures. Our numerical study shows that
the existence of the second integral of motion M is crucial
for the fusion of peaks. Indeed, the fusions disappear
and the spins remain near the north pole if the second
integral of motion is destroyed by a symmetry breaking
field. As a result, the statistical description requires the
computation of the phase space surface on which M and H
are constant. Using Snx and Sny as linear approximations
of the canonical coordinates, the grandcanonical partition
function for low energies may be computed as

Y �b, g� �
Z

e2b�Heff2gMeff�dG

�

µ
p

cosh�gb� 1 m

A2b

∂N

, (4)

with the abbreviations A �
p

J�2 1 ��1 1 g��8� 1p
�1 1 g��8 and m �

q
sinh2�gb� 1 e24Jb . In (4), b is

the inverse temperature, g is the equivalent of a magnetic
field or a chemical potential, and dG is the elemental
phase space volume. The thermodynamic properties of the
equilibrium state may be derived from the Gibbs potential
G�b, g� � b21 ln�Y� when b and g are calculated
for M and H. The more appropriate thermodynamic
potential is the entropy S � b�H 2 G 2 gM� written
as a function of M and H. The old variables b, g and the
new variables H, M are connected by M �

1
b

≠

≠g ln�Y�,
H � � g

b

≠

≠g 2
≠

≠b � ln�Y�.
Since the truncation (2) of the Hamiltonian is valid for

low energy excitations, we will discuss the entropy in the
low temperature limit b21 ø 1, g � b21�2e22Jb ø 1.
The energy of the Ising magnet decreases exponentially as
HI � 2JNg21b21e24Jb � b21�2e22Jb , and therefore it
contains a very small number HI��4J� of domain walls,
but the number of spins that flip down may be proportional
to �b21, the temperature. The spin waves provide the
bulk of the energy H � Hw and the entropy S � Sw . The
entropy of the spin waves per lattice site turns out to be
Sw�N � lnV, with the number of accessible microstates
V per spin,

V � �Hw 1 �4J 1 1�Mw� �Hw�Mw 1 1� . (5)

Figure 3 shows V, b21, and g as a function of the
magnetization of the spin waves. There are highly ordered
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FIG. 3. Number of states V [Eq. (5)], temperature b21

[Eq. (7)], and thermodynamic magnetic field (or chemical
potential) g of the spin wave system against the magnetization
of the spin waves for Hw � 1, J � 0.4.

solutions V � 0 for Mw � M0 � 2Hw and for
Mw � Mp � 2Hw��4J 1 1�. These cases of maximal
and minimal magnetization correspond to a spin wave
with wave numbers 0 and p, respectively. Mw � 2H
and MI � N corresponds to the initial condition of the
simulation of Figs. 1 and 2. M0 # Mw # Mp defines
the range of possible states with positive V�Mw�; V�Mw�
has a maximum at Meq � 2Hw�

p
4J 1 1 for a given

value of Hw where the Lagrange parameter g � 2
1
b

≠S
≠Mw

is zero. The spin waves with a wave number k contributes
the power,

	nk
 � b21�2J�1 2 cosk� 1 1 1 g�21, (6)

to the Hamiltonian H �
P

k nkvk, with nk � SkxS2kx 1
SkyS2ky and vk � 2J�1 2 cosk� 1 1. Our numerical
work agrees perfectly with this Rayleigh-Jeans distribu-
tion 	nk
 � T��g 1 vk� (Fig. 4). The temperature of an
equilibrium with a given magnetization Mw is

b21 �
�H 1 Mw� �H 1 �2 1 4J�Mw�

2H 1 �1 1 4J�Mw
. (7)

The ordered states of a spin wave with k � 0 �Mw � M0�
or with k � p �Mw � Mp� both correspond to zero tem-
peratures. The state of maximal entropy has the tempera-
ture b21 � �1 1 4J�H�N .

To maximize the entropy, the right amount of magne-
tization has to be allocated to the spin waves. This is
possible because the Ising magnet can change its magne-
tization by flipping spins down or up. While the energy
of the spin waves is fixed Hw � H, the magnetization
Mw � M 2 MI , 0 can be adjusted to the ideal value
Meq by turning over magnetization to the Ising part, MI �P

sn, when some of the spins flip down. The maxi-
mum entropy of the spin waves can be reached if the
power is gathered on longer space scales initially so that
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FIG. 4. Spatial power spectrum averaged over 100 000 time
steps and the Rayleigh-Jeans distribution (6).

the magnetization Mw 1 MI 2 N is smaller than Meq �
2H�

p
4J 1 1. The entropy generation is caused by the

thermalization of the energy of this relatively ordered ini-
tial state. In this case, the system can increase Mw if it
decreases MI by flipping spins from the north to the south
to keep Mw 1 MI constant. This is the statistical reason
for the continuation of the focusing process: To increase
the entropy of small-scale fluctuations, the system has to
adjust their share of the second integral of motion. This is
done by the formation of coherent pulses with high ampli-
tudes. In Fig. 3 this means that the system is allowed to
move from the left to the right to increase V in any case,
but it may only move from the right to the left if the Ising
magnetization is smaller than its maximum MI � N . Fig-
ure 5 compares thermodynamical and numerical findings
of the final ratio of anisotropic energy and coupling en-
ergy (corresponding to Fig. 2 after long integration times).
The deviation for low coupling constants corresponds to a
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FIG. 5. Numerical (points) and thermodynamical (line) results
for Ha�HJ against the coupling constant J after long integration
times.
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FIG. 6. Numerical (points) and results for the total magnetiza-
tion

P
n�Snz,0� jSnzj of the spins in the southern hemisphere and

thermodynamical prediction (line) for the share of spins that
point down against the total energy per spin for M�N �

p
0.84.

surplus of domain walls that are still present after long
integration times which do not exist in the thermody-
namic equilibrium. The size of the coherent structures
is given by the number of spins MS � �N 2 MI��2 of
the Ising magnet that point down. Figure 6 shows this
number as a function of the energy per spin while the
magnetization is fixed. For energies above the thresh-
old H � �N 2 M�

p
4J 1 1, only an exponentially small

share of spins point down. For M , N 1 Meq, the num-
ber of spins that condense at the south pole increases lin-
early as MS � �N 2 M 2 H�

p
4J 1 1��2. The curve

in Fig. 6 is an analytic function, but it approaches a phase
transition for decreasing temperatures. This emergence of
coherent structures in the lowest order of the temperature
is a consequence of the second integral of motion. The
threshold does not occur in studies [12] of the thermody-
namics of similar systems where the available phase space
is not restricted by the second conserved quantity. The
generation of an exponentially small number of strongly
nonlinear structures in these systems is a purely thermal
effect.

The phenomenon we have described is widespread. One
of us (A. C. N.) encountered it in numerical algorithms for
pde’s. In [3,4] it was shown that, despite a choice of
algorithms designed to remove all fast instabilities, non-
integrable focusing eventually produces local errors large
enough to overcome nonlinear instability thresholds. It
was also seen by Dyachenko et al. [6] in a near inte-
grable extension of the NLS equation which is the small
amplitude continuum limit of (1). In a soliton collision,
they found that the stronger one becomes stronger and the
weaker one becomes weaker. Radiation which enhances
the entropy of the wave field is produced. In order that
the independent Hamiltonian H �

R
j=fj2 2 jfj4�dV
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and particle number N �
R
jfj2 dV are conserved, an in-

crease in
R
j=fj2 dV must be accompanied by an increase

in peaks with high jfj values.
The physical conclusion of this result is that the continu-

ing focusing process is driven by the generation of en-
tropy in a state of small amplitude waves. The link
between the entropy and the emergence of peaks is the
constraint by two integrals of motion. In terms of equation
(6), an initial distribution of particles nk will not be able
to reach the Rayleigh-Jeans distribution while obeying
both the conservation of energy

P
nkvk and the particle

number
P

nk . But the restriction of particle conservation
may be circumvented by gathering low-energy particles
in small domains and transferring energy to the remaining
particles to increase the overall entropy. The peaks created
by the self-focusing process are therefore condensates of
low-energy particles. In that sense, the formation of peaks
has a formal similarity to the condensation of droplets
in oversaturated steam where the entropy is maximized
under the restriction of particle conservation.
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