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Empirical Realization of a Critical Point Description in Atomic Nuclei
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It is shown that 152Sm and other N � 90 isotones are the first empirical manifestation of the newly
predicted analytic description of nuclei at the critical point of a vibrator to axial rotor phase transition.
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Dynamical symmetries provide elegant and analytic
paradigms for the behavior of a wide variety of physical
systems, ranging from molecules to nuclei and elementary
particles [1]. The concept and properties of such bench-
marks can link the physical interpretations of diverse
systems. In atomic nuclei, the interpretation of collective
structure has benefited from such standards —the vibrator
and the rotor. Most nuclei, however, do not actually satisfy
these stable limits of structure but rather are in regions
of changing character as a function of nucleon number.
Indeed, these transition regions can be quite abrupt and,
despite the finite nature of nuclear systems, can exhibit
phase transitional and critical point behavior that is similar
to that found in a wide variety of many-body systems.

Nuclear transition regions have historically been the
most difficult to interpret since they exhibit a complicated
interplay of competing degrees of freedom and, conse-
quently, are usually treated in terms of complex numerical
calculations involving parametrized Hamiltonians. Par-
ticularly challenging are nuclei at the critical point of a
phase transition where structure is changing most dramati-
cally. Yet such nuclei are, in many respects, the most
important, as their structure defines the nature of the transi-
tion region itself. The development of an exactly solvable
analytic model for critical point systems would, therefore,
be a significant advance for nuclear structure and would,
moreover, have wide applications to other many-body sys-
tems as well.

Recently, the concept of such critical point solutions has,
in fact, been introduced [2,3] with the development of a
new class of symmetries which are based on the solutions
to differential equations. The first case worked out [2]
is a dynamical symmetry called E(5), and, in the nuclear
context, applies to a shape transition region from spherical
vibrator to deformed g-soft nuclei where the phase tran-
sition is in 1 degree of freedom only, the deformation b.
A much more commonly encountered and important, but
also more complex, kind of phase transition, from vibrator
to axial rotor, is also far more challenging since it involves
2 degrees of freedom, b and g, in which there is a phase
transition in b for a potential which is g dependent as well.
A description of such a situation, denoted X(5) (which, as
discussed in Ref. [3], is a dynamical symmetry, albeit of
unusual nature), has now also been developed [3].
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The basic idea of this new paradigm is sketched in Fig. 1
where the observable R4�2 � E�41

1 ��E�21
1 � is shown for

nuclei which span a vibrational to axial rotor region. In-
cluded in the figure are sketches of the potential at differ-
ent stages along the structural evolution. There are two
competing minima, spherical and deformed, in the poten-
tial. At the critical point, these two minima cross and the
shape changes from spherical to axially deformed (as dis-
continuously with nucleon number as the finite nature of
nuclei permits). This behavior is reflected in the sharp rise
in R4�2. A simple approximation to the critical point po-
tential, which neglects the small barrier between the two
minima, gives rise to an analytically solvable model [3].

It is the main purpose of this Letter to discuss the realiza-
tion of this concept in actual physical systems, specifically
as it is exemplified in atomic nuclei, showing that 152Sm is
an excellent empirical manifestation of this critical point
structure.

A derivation of the energy eigenvalues and E2 tran-
sitions at the critical point in a spherical ! axially de-
formed shape/phase transition is given in Ref. [3]. Here
we briefly outline the basic ansatz and summarize the re-
sults. The starting point is the Bohr Hamiltonian [4] where

FIG. 1. Example of a vibrator to rotor transition region.
R4�2 � E�41

1 ��E�21
1 � data for the Sm isotopes. The vibrator and

rotor limits, and the critical point, are indicated with sketches
of the potential V�b� for each situation.
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it is assumed that the potential V �b, g� can be written
V �b, g� � V�b� 1 V �g�. If the potential V�b� at the
critical point is taken to be a square well of width bw ,
then the eigenvalues are given by

´b;s,L �
�xs,L�2

b
2
W

, (1)

where xs,L is the sth zero of the Bessel function Jn�z� (z �
b

p
2mEb�h̄), and where the order of the Bessel func-

tion is

n �

µ
L�L 1 1�
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As will be discussed in more detail below, the levels belong
to distinct sequences labeled by the quantum number s.

The wave functions are given by

js,L�b� � cs,Lb23�2Jn�ks,Lb�; ks,L �
xs,L

bW
, (3)

with the normalization constants cs,L obtained from the
condition

R`
0 b4j

2
s,L�b� db � 1. Note the essential point

that the order of these Bessel functions Jn�z� is an irra-
tional number in contrast to E(5) where the order is half
integer.

Transition rates have also been calculated [3] by taking
matrix elements of the quadrupole operator

T �E2� � tb
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where t is a scale factor.
Some of the predicted energy levels and B(E2) val-

ues are shown in Fig. 2 in units of E�21
1 � 2 E�01

1 � and
B�E2 : 21

1 ! 01
1 � � 100. More extensive results for the

FIG. 2. Low lying levels predicted by X(5) [3] for the s �
1, 2, 3 sequences. Intrasequence B(E2) values and the B�E2 :
01

s ! 21
s21� values are given in units of 100 for the B�E2 :

21
1 ! 01

1 � value. A more extensive set of B(E2) values is given
in Fig. 3.
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B(E2) values are given in Ref. [3] and will be shown in
Fig. 3 in comparison with the data. We stress that all the
predictions are parameter independent except for overall
scale normalizations and that the levels are assigned quan-
tum numbers, s, which determine their energies and tran-
sition rates. This situation, therefore, differs qualitatively
from a numerical fit with a parametrized Hamiltonian.

Note that the ratio R4�2�s � 1� � 2.91, which is in-
deed appropriate for a nucleus at the critical point of a
vibrator to rotor phase transition. Also, the yrast B�E2 :
J 1 2 ! J� values increase with J at a rate intermediate
between that of a vibrator and a rotor. Particularly inter-
esting is the prediction that the energy of the 01

2 level is
fixed by the symmetry. We also note that the higher ly-
ing sequences (s � 2, 3, . . .) have successively lower R4�2
values and successively smaller intrasequence B(E2) val-
ues, reflecting lower expectation values of the deformation
b. Finally, we note (see Fig. 3 below) that the symme-
try predicts specific (Ds � 1) inter-s-sequence E2 transi-
tions, which show substantial and characteristic variations:
the J ! �J 1 2�B�E2� values being the most collective.
These intersequence transitions reflect strong phase mixing
at the critical point which is a characteristic feature of this
description. The Ds $ 2 transitions are extremely weak.

Since nuclei contain integer numbers of nucleons, their
properties change discretely with N and Z, and therefore,
in any given transition region, there is no assurance that
any specific nucleus will occur at the critical point. Nev-
ertheless, the new critical point description immediately
brings to mind 152Sm where recent measurements [5–7],
which have substantially revised previous data, have inde-
pendently led to the conclusion [8,9] that 152Sm is very
near the critical point of a vibrator to rotor transition re-
gion and shows evidence of phase coexistence. Indeed,
R4�2�152Sm� � 3.01, which is in the crossover region in
Fig. 1. Also, R4�2 for the states built on the 01

2 state is
2.69. The difference in these two values was one of the
original indicators of a coexistence of two distinct phases
in 152Sm—near deformed for the ground state and (anhar-
monic) vibrational for the 01

2 level. Moreover, empirically,
these coexisting states have collective connecting B(E2)
values suggesting a mixing of phases.

A comparison of the data [5–7] for 152Sm with the X(5)
predictions [3] is shown in Fig. 3. The agreement is re-
markable. Recall that, after a single normalization of the
energy and transition rate scales, the predictions are com-
pletely parameter free.

First, we see that the R4�2�s � 1� value is very close
to experiment. Indeed, the predicted yrast energies agree
very well with the data and reflect the nature of the critical
point structure, intermediate between a vibrator and a rotor.
This is shown explicitly in Fig. 4, which also includes
another N � 90 isotone, 150Nd. (Other N � 90 isotones,
such as 154Gd and 156Dy, are likewise similar.) The slight
deviations for both nuclei suggest that 152Sm and 150Nd are
just past the actual critical point, towards the rotor limit,
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FIG. 3. Comparison of X(5) with the data [5–7] for 152Sm. The E�21
1 � value (in keV) and the B�E2 : 21

1 ! 01
1 � value (in W.u.) are

normalized to the data. The R4�2 values given refer to relative energies within an s sequence of levels.
which is also consistent with the fact that, for the s � 1
sequence, R4�2�exp� . R4�2�X�5��.

We next note that R4�2�s � 2� , R4�2�s � 1� both in
X(5) and the data, consistent with a lower expectation
value of b in the excited sequence, reflecting the phase
coexistence that we have mentioned. This difference in the
structure of the s � 1 and s � 2 sequences is also seen in

FIG. 4. Energy levels of the s � 1 sequence in X(5) compared
to yrast energies in the harmonic vibrator and symmetric rotor
limits. Data for 152Sm (crosses) and 150Nd (open symbols) are
shown.
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the B�E2 : 21
2 ! 01

2 � value, which is about 25% lower
than the corresponding s � 1 value. These predictions
agree almost exactly with the data. Finally, the comparison
of predicted and observed “bandhead” energies of the s �
2 sequence is of interest: E�01

2 � is 5.67 times E�21
1 � in X(5)

compared to 5.62 in the data. One significant disagreement
is the expanded energy scale for the s � 2 states compared
to the data. This also occurs in numerical fits to 152Sm
[6,10], and its origins need to be further studied.

The s � 1 and s � 2 intrasequence B(E2) values are
also in excellent agreement, displaying a J dependence
that is transitional between vibrator and rotor. Finally,
as noted above, the model predicts a full set of interse-
quence B(E2) values. The J ! J 1 2 transitions are pre-
dicted to be quite collective; the others much less so. This
is true empirically as well. However, the absolute mag-
nitudes of the predicted intersequence B(E2) values are
nearly 3 times larger than observed. Nevertheless, the rela-
tive values (with the exception of the 41

2 ! 61
1 transition)

are in striking agreement with the data, over a range of
nearly 2 orders of magnitude, as shown in Fig. 5, and, once
again, show a pattern that is that of neither a vibrator nor
a rotor.

In this Letter, we have focused on excitations involving
the b degree of freedom. A full treatment of the g degree
of freedom, involving b-g coupling terms in the potential
V �b, g�, is more complex and will be discussed later in
052503-3
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FIG. 5. Comparison of intersequence B(E2) values in X(5)
with the data for 152Sm. Theory and experiment are normalized
for the 01

2 ! 21
1 transition.

a longer publication. Reference [3] contains an approxi-
mate analysis. Numerical calculations of the critical point
structure [8,11] that automatically include the g degree of
freedom and higher order terms in the E2 transition opera-
tor suggest that even better agreement may be obtained
when the g degree of freedom and b-g coupling is taken
into account.

In summary, we have shown evidence that the new
benchmark, denoted X(5) in Ref. [3], which describes a
system at the critical point of a first order phase transition
in two variables (vibrator to axial rotor transition region in
atomic nuclei), is closely manifested empirically in 152Sm.
Other N � 90 isotones are very similar in structure. Over-
all, the agreement of the data and predictions is excellent.
The discrepancies that do exist may reflect the fact that
152Sm is slightly to the deformed side of the critical point,
or that the treatment of the g degree of freedom is only
approximately incorporated.

This is the first empirical example of this new descrip-
tion of nuclei at the critical point of a first order phase tran-
052503-4
sition. This description provides a new structural paradigm
for nuclei and should have applications in other many-body
systems as well.
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