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Within the impulse approximation, the response of a many-body system at large momentum transfer
can be directly related to ground state properties. Although the physics assumptions underlying impulse
approximation are well defined, their implementation involves ambiguities that may cause significant
differences in the calculated responses. We show that, while minimal use of the impulse approximation
assumptions naturally leads to write the response in terms of the spectral function, the alternative defi-
nition in terms of the momentum distribution involves a more extended use of the same assumptions.
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The purpose of this Letter is to show that a truly unam-
biguous definition of the response of a strongly interacting
many-body system to an external probe, within the impulse
approximation (IA), must be based on the use of the target
spectral function, rather than its momentum distribution.

The main assumption underlying IA is that, as the space
resolution of a probe delivering momentum q to a many-
body system is �1�jqj, at large enough jqj the target is
seen by the probe as a collection of individual constituents.
Within this picture, the response measures the probability
that, after giving one of the constituents a momentum q
at time t � 0, the system be reverted to the ground state
after time t giving the same constituent a momentum 2q.

The second assumption involved in IA is that final state
interactions (FSI), taking place at t , t0 , 0 between the
hit constituent and the �N 2 1�-particle spectator system,
be negligible. The most popular argument supporting this
assumption is based on the observation that, compared to
the amplitude in the absence of FSI, the amplitude of the
process including a rescattering in the final state involves
an extra propagator, describing the motion of the struck
particle carrying a momentum �q. As a consequence, this
amplitude is expected to be suppressed when jqj is large.

In spite of the fact that the two basic assumptions under-
lying IA can be unambiguously stated, in the literature one
finds two different definitions of the IA response, involv-
ing either the target spectral function [1] or its momentum
distribution [2].

The two different definitions arise from different imple-
mentations of the IA assumptions and may lead to signif-
icantly different numerical results. In addition, as IA can
be seen as the zeroth order of a systematic approxima-
tion scheme, to be improved upon including FSI effects,
the ambiguity in the IA response poses a serious problem,
making it difficult to identify genuine FSI effects. This
feature is particularly critical in the analysis of the elec-
tromagnetic response of nuclear systems, where FSI are
believed to play a relevant role even at large jqj [3].
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In this short Letter we show that the definition of the re-
sponse in terms of the spectral function follows from mini-
mal use of the assumptions involved in the IA scheme and
correctly takes into account the correlation between mo-
mentum and removal energy of the hit constituent. On the
other hand, a more extended use of the same assumptions
leads to the definition in terms of the momentum distri-
bution, which totally disregards the effect of the removal
energy distribution.

The response of an N-particle system to a scalar probe
is defined as [2]

S�q, v� �
1
N

Z dt

2p
eivt�0jry

q �t�rq�0� j0�

�
1
N

Z dt
2p

eivt�0jeiHtry
q e2iHtrqj0� , (1)

where q and v denote the momentum and energy trans-
fer, respectively, H and j0� are the target Hamiltonian and
ground state, satisfying the Schrödinger equation Hj0� �
E0j0�, and rq �

P
k a

y
k1qak, a

y
k1q and ak being the usual

creation and annihilation operators. Note that the above
definition can be readily generalized to describe the elec-
tromagnetic response replacing rq with the appropriate
electromagnetic current operator.

Using the Schrödinger equation to get rid of one of the
propagators appearing in Eq. (1) we obtain

S�q, v� �
1
N

Z dt

2p
ei�v1E0�t�0jry

q e2iHtrqj0� . (2)

The above definition can be simplified introducing the first
assumption involved in IA, i.e., that the process involves
only one constituent, while the remaining �N 2 1� par-
ticles act as spectators. As a result, the ground state ex-
pectation value appearing in Eq. (2) can be rewritten in
configuration space as [R � �r1, . . . , rN � specifies the po-
sitions of the N target constituents]
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�0jry
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0 �R�e2iq?r1

3 �Rje2iHt jR0�eiq?r01C0�R0� , (3)

where C0�R� � �R j 0� is the ground state wave function.
The N-particle Hamiltonian H can be split according to

H � H0 1 T1 1 HFSI , (4)

where H0 denotes the Hamiltonian of the spectator system

H0 �
NX

i�2

2
=

2
i

2m
1

NX
j.i�2

yij , (5)

yij and m being the potential describing the interactions
between target constituents and the constituent mass, re-
spectively. The remaining two terms in Eq. (4) are the
kinetic energy of the struck particle,

T 1 � 2
=

2
1

2m
, (6)

and

HFSI �
NX

j�2

y1j . (7)

The second assumption involved in IA amounts to disre-
garding the contribution of HFSI, describing the FSI be-
tween the hit constituent and the spectators. As H0 and T1

obviously commute, this allows one to rewrite the configu-
ration space N-body propagator appearing in Eq. (3) in the
simple factorized form [R̃ � �r2 · · · rN�]

�Rje2iHt jR0� � �R̃je2iH0t jR̃0� �r1je
2iT1tjr01� . (8)

The two propagators on the right-hand side (rhs) of the
above equation can be written in spectral representation as

�R̃je2iH0t jR̃0� �
X
n

e2iEntFn�R̃�F�
n�R̃0� (9)

and

�r1je
2iT1tjr01� �

Z d3p

�2p�3 e2iEpteip?�r12r0
1�, (10)

where Fn�R̃� � �R̃ jn�, En and jn� satisfy the
�N 2 1�-particle Schrödinger equation H0jn� � Enjn�,
and Ep � p2�2m.

Using Eqs. (9) and (10) and substituting Eq. (8) into
Eq. (3) we get

�0jry
q e2iHtrqj0� � N

Z d3p
�2p�3

X
n

e2i�Ep1En�t

3

Ç Z
dR ei�p2q�?r1 C�

0 �R�Fn�R̃�
Ç2

.

(11)
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Finally, substitution of the above result into Eq. (2) leads
to

S�q, v� �
Z d3p

�2p�3 dE P�p 2 q, E�d�v 2 Ep 2 E� ,

(12)

where the spectral function, defined as

P�k, E� �
X
n

Ç Z
dR eik?r1 C�

0 �R�Fn�R̃�
Ç2

3 d�E 1 E0 2 En� , (13)

measures the probability of removing a constituent of mo-
mentum k from the target ground state leaving the residual
system with excitation energy E.

Let us now consider a different way of implementing
the physical assumptions underlying IA in the calculation
of S�q, v�. In going from Eq. (1) to Eq. (2) we have ex-
ploited the Schrödinger equation to get rid of one of the
two N-body propagators. We have then used the assump-
tion HFSI � 0 to rewrite the remaining propagator in the
factorized form that led to the emergence of the spectral
function in the formalism. In principle, as IA provides a
prescription to rewrite the N-particle propagator in a sim-
pler form, one may just as well use this prescription and
rewrite both propagators appearing in Eq. (1), rather than
use the Schrödinger equation. However, this procedure re-
sults in a definition of S�q, v� in which the information on
the target removal energy distribution is totally lost.

The ground state expectation value relevant in this case,

�0jeiHtry
q e2iHtrqj0� � N

Z
dRdR0dR00 C�

0 �R�

3 �RjeiHt jR00�e2iq?r001

3 �R00je2iHtjR0�eiq?r0
1 C0�R0� ,

(14)

can be rewritten using again factorization and the spectral
representation. In addition, the dependence upon the state
of the spectator system can be removed applying the or-
thonormality relations

Z
dR̃F�

n�R̃�Fm�R̃� � dnm (15)

and

X
n

F�
n�R̃�Fn�R̃0� � d�R̃ 2 R̃0� . (16)

As a result, the rhs of Eq. (14) becomes
N
Z

dR d3r 01 d3r 001
Z d3k
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and integration over r00 and p yields

�0jeiHtry
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(18)

Finally, substitution of the above equation into Eq. (1)
leads to

S�q, v� �
Z d3k

�2p�3 n�k� d�v 1 Ek 2 Ejk1qj� , (19)

where the momentum distribution n�k�, yielding the
probability to find a constituent carrying momentum k in
the target ground state, is given by

n�k� �
Z

d3r1d3r 01 eik?�r12r01�
Z

dR̃C�
0 �r1, R̃�C0�r01, R̃� .

(20)

Comparison between the above equation and Eq. (13)
shows that the momentum distribution is simply related to
the spectral function through

n�k� �
Z

dE P�k, E� . (21)

As a first example, illustrative of the differences between
S�q, v� evaluated using Eq. (12) and that resulting from
Eq. (19), we discuss the response of infinite nuclear matter
at equilibrium density r � 0.16 fm23.

An ab initio microscopic calculation of the nuclear mat-
ter spectral function, carried out within the framework of
correlated basis function perturbation theory using a re-
alistic Hamiltonian, is described in Ref. [1]. The main
feature of the spectral function of Ref. [1] is the pres-
ence of a substantial amount of strength at large E, lead-
ing to an average removal energy ē � �E� � 61.9 MeV,
much larger than the Fermi energy eF � 16 MeV. In ad-
dition, the calculated P�k, E� exhibits a strong correlation
between momentum and removal energy, implying that
large momentum (jkj ¿ kF , kF � 1.33 fm21 being the
Fermi momentum) always corresponds to large removal
energy (E ¿ eF). For example, 50% of the strength at
jkj � 3 fm21 resides at E . 200 MeV [1].

The solid and dashed lines in Fig. 1 show the v de-
pendence of S�q, v� evaluated from Eqs. (12) and (19),
respectively, at jqj � 5 fm21. At this momentum transfer,
the nuclear response exhibits scaling in the variable y [4],
reflecting the onset of the IA regime [5].

The solid line in Fig. 1 has been obtained using the
spectral function of Ref. [1], whereas the momentum
distribution employed to obtain the dashed line has been
consistently calculated by E integration of the same
P�k, E�, according to Eq. (21).

While the two curves have similar shape, their width
being dictated by the momentum distribution, they appear
052501-3
FIG. 1. Infinite nuclear matter S�jqj, v� at equilibrium den-
sity and jqj � 5 fm21 . The solid and dashed lines have been
obtained from Eqs. (12) and (19), respectively. The diamonds
represent the results obtained replacing Ek with Ek 1 ē in the
argument of the energy-conserving d function of Eq. (19).

to be shifted with respect to one another. The peak of
the dashed curve is located at energy v � jqj2�2mN , cor-
responding to elastic scattering off a free stationary nu-
cleon, whereas the solid line, due to the removal energy
distribution described by the spectral function, peaks at
significantly larger energy. To illustrate this feature we
show by diamonds the results obtained replacing Ek with
Ek 1 ē in the argument of the energy conserving d func-
tion of Eq. (19). The corresponding response, shifted by
ē � 61.9 MeV with respect to the dashed curve, turns out
to be very close to that obtained from Eq. (12).

In addition to the shift in the position of the peak, the
dashed and solid lines sizably differ at low energy trans-
fer, where the response obtained using the momentum dis-
tribution is much larger than that obtained from Eq. (12).
The difference between the two curves in the low v region
makes it difficult to identify corrections to the response of
Eq. (19) arising from mechanisms not included in the def-
inition of IA. For example, a quantitative study of FSI
effects, which are known to dominate the nuclear response
at low v, should be carried out starting from S�q, v� de-
fined as in Eq. (12).

In conclusion, the results of Fig. 1 clearly show
that the nuclear responses extracted from electron-
nucleus scattering data at momentum transfer in the few
GeV�c range �1 GeV�c � 5 fm21� must be analyzed
using spectral functions according to Eqs. (12) and (13),
as in Refs. [3,6].

On the other hand, the definition of S�q, v� in terms of
the momentum distribution has been successfully used to
describe the response of liquid helium, measured by in-
clusive scattering of thermal neutrons [2,7]. The excellent
agreement between the response calculated from Eq. (19)
and the experimental one can be explained noting that
(i) the region of momentum transfer covered by neutron
052501-3
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FIG. 2. S�jqj, v� in liquid 3He at jqj � 10 Å21 and equilib-
rium density. The solid and dashed lines have been obtained
using Eqs. (12) and (19), respectively.

scattering data extends to extremely high jqj, typical val-
ues being larger than 10 Å21 and (ii) the analysis has been
focused on the region of the peak.

In liquid 3He at equilibrium density �r �
0.016 35 Å23� the half-width of the peak of the re-
sponse at jqj � 10 Å21 is roughly given by (M denotes
the mass of the helium atom) jqjkF�M � 200 K, to be
compared to a Fermi energy eF � 2.47 K, and the shift in
v of �10 K produced by the removal energy of the struck
particle reduces to a very small effect.

The nuclear matter response of Fig. 1, on the other
hand, has a half-width of �250 MeV, to be compared to a
Fermi energy eF � 16 MeV and an average removal en-
ergy ē � 61.9 MeV. As a consequence, the shift between
the solid and dashed lines is clearly visible [8]. To observe
a comparable effect in liquid 3He, one should consider the
response at jqj � 3 Å21, where the half-width of the peak
shrinks to �50 K.

The small effect of the removal energy on the posi-
tion of the peak of the response of liquid 3He at r �
0.016 35 Å23 and jqj � 10 Å21 is illustrated in Fig. 2,
where the solid and dashed lines correspond to S�q, v�
evaluated from Eqs. (12) and (19), respectively. The mo-
mentum distribution and spectral function employed in
the calculations have been consistently obtained within
the Fermi hypernetted chain formalism and the diffusion
Monte Carlo method [9].

In conclusion, we have shown that the two different
prescriptions used in the literature to evaluate the response
052501-4
of strongly interacting many-fermion systems corre-
spond to different implementations of the assumptions
underlying IA. While minimal use of these assumptions
leads to the definition in terms of the spectral function,
which correctly takes into account the removal energy
distribution of the struck particle, the response obtained
from the momentum distribution does not include all
interaction effects. The excellent agreement between the
theoretical S�q, v� obtained from Eq. (19) and the
experimental data for liquid 3He at jqj $ 10 Å21 [9]
indicates that this feature is not critical to the analysis
of the response of nonrelativistic systems at very large
momentum transfer, corresponding to �jqj�kF� . 10, in
the region of the peak. On the other hand, disregarding
the removal energy distribution in the calculation of the
nuclear matter response at jqj � 5 fm21, corresponding to
�jqj�kF� � 4, produces a sizable shift of the quasielastic
peak. In addition, away from the peak large discrepancies
between the S�q, v� obtained from Eqs. (12) and (19)
persist even at very large jqj. Hence, a quantitative study
of FSI effects, which are known to be important in the low
energy region v ø jqj2�2m, requires as starting point
the IA response calculated using the spectral function.
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