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Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?
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We study the role of entanglement in quantum computation. We consider the case of a pure state con-
taminated by “white noise.” This framework arises, for example, in pseudopure state implementations of
quantum computing using NMR. We analyze quantum computational protocols which aim to solve expo-
nential classical problems with polynomial resources and ask whether or not entanglement of the pseudo-
pure states is needed to achieve this aim. We show that, for a large class of such protocols, including
Shor’s factorization, entanglement is necessary. We also show that achieving entanglement is not suffi-
cient: If the state is sufficiently noisy, exponential resources are needed even if entanglement is present.
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In a beautiful example of how technology can stimu-
late fundamental physics, the proposals for implement-
ing quantum computing via liquid-state NMR [1–4] have
sparked a debate recently on the very nature of quantum
computing [5–9]. More precisely, doubts have been raised
as to whether entanglement is a necessary requirement for
a quantum computer to be able to speed-up a computation
(exponentially) relative to a classical computer.

The proposal to use liquid-state NMR with pseudopure
states for quantum computing has two important aspects.

(i) Bad kinematics. —On the one hand, liquid-state
NMR quantum computing has a great disadvantage: One
cannot prepare pure states. This situation is different from
the original quantum computation protocols which consid-
ered the quantum computer in a pure state jC�. Instead, in
the NMR protocol, one prepares “pseudopure” states, i.e.,
mixed states of the form

r � �1 2 e�M 1 ejC� �Cj , (1)

where M is the maximally mixed state (i.e., the identity
density matrix normalized to have trace 1). In other words,
in quantum information theory, one says that (1) represents
the pure state jC� contaminated with noise. We note that
we use the term pseudopure to mean any state of the form
(1) without restriction as to how it arises. In liquid-state
NMR, states of this form are produced from a thermal den-
sity matrix by suitable manipulations leading to a certain
scaling of e with the number of qubits. However, we do
not assume any behavior of e initially; we consider any
state of the form (1).

In addition to the fact that, in liquid-state NMR, one pre-
pares states of the form (1), rather than pure states, it has
been shown [6] that in all experiments until now the noise
is so large that the pseudopure state r is nonentangled even
if the pure-state component jC� is entangled. Since entan-
glement is widely considered to be the main ingredient in
quantum computing, these results lead to the question as
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to whether the NMR scheme is a “true” quantum compu-
tation [6].

(ii) Good dynamics.—On the other hand, the NMR ex-
periments have a great advantage: one can produce correct
dynamics; that is, the interactions between the spins are
exactly as required in the theoretical quantum computa-
tional protocols. Thus if the initial state of the spins would
be pure instead of pseudopure, NMR experiments would
completely implement the original quantum computation
protocols.

Furthermore, the noise in the pseudopure state looks
quite benign —it averages to zero (without loss of gen-
erality we can consider our observables to be traceless).
Thus the expectation value of any operator A when the
quantum system is in a given pure state jC� is the same,
up to normalization, as the average in the corresponding
pseudopure state r � �1 2 e�M 1 ejC� �C j, i.e.,

Tr�Ar� � e�CjAjC� . (2)

Given the good dynamics, some authors have suggested
that in fact liquid-state NMR computing is nonetheless a
true quantum computation, capable of speeding-up com-
putations relative to classical computers. As a corol-
lary, it was suggested that perhaps entanglement is not a
sine-qua-non requirement for quantum computing [7].

Whether or not entanglement is a necessary condition
for quantum computation is a question of fundamental
importance. In the present Letter, we study this question
for the pseudopure-state quantum computing. Although
the particular scheme we study is inspired by liquid-
state NMR, its importance goes far beyond NMR since the
state we consider (1) is the canonical example of a noise-
contaminated state, namely, a pure state contaminated
with “white noise.”

We analyze quantum computational protocols which
aim to solve exponential classical problems with poly-
nomial resources and ask whether or not entanglement
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of the pseudopure states is needed to achieve this aim. We
show that, for a large class of such protocols, including
Shor’s factorization [10], entanglement of the pseudopure
states is necessary: unless the pseudopure state (1) of the
quantum computer becomes entangled during the compu-
tation, the aim of transforming exponential problems to
polynomial ones cannot be achieved.

We will first consider the general effect of noise on
the computation, then the relationship between separability
and noise.

Consider then a pure-state computational protocol in
which the computer starts in the state jC0� and ends in
the state jCf � � UjC0�, where U is the unitary time evo-
lution operator which describes the computation. The cor-
responding computation starting with pseudopure state

r � �1 2 e�M 1 ejC0� �C0j (3)

ends up in the state

r � �1 2 e�M 1 ejCf� �Cf j . (4)

Upon reaching the final state, a measurement is carried out
and the result of the computation is inferred from the result
of the measurement.

We will assume the most favorable case that the pure-
state protocol gives the correct answer with certainty with
a single repetition of the protocol and that, if the result of
the computation is found, one can check it with polynomial
overhead. We will then show that the pseudopure-state
protocol requires of the order of 1

e repetitions. Thus if e

becomes exponentially small with N , the number govern-
ing the scaling of the classical problem (in other words
the noise becomes exponentially large with N ), the pro-
tocol requires an exponential number of repetitions to get
the correct answer. So, for this amount of noise, the quan-
tum protocol with a pseudopure state cannot transform an
exponential problem into a polynomial one: even in the
best possible case that the pure-state protocol takes one
computational step, the protocol with noise takes expo-
nentially many steps. We emphasize that this conclusion
applies quite generally to pseudopure-state quantum com-
puting and is independent of the discussion of separability
which follows later.

In the state (4) there is a probability e of finding the
computer in the “correct” final state jCf � arising from the
term

ejCf� �Cf j , (5)

in (4). As stated above, we will assume here the most
favorable case, that if the state is jCf� then, from the out-
come of the final measurement, one can infer the solution
to the computational problem with certainty with one repe-
tition. We note that in general protocols, such as Shor’s
algorithm, for example, a single repetition of the protocol
is not sufficient to find the correct answer.
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There is also the probability �1 2 e� of finding the com-
puter in the maximally mixed state M. In this case, there
is a possibility that the correct answer will be found, since
the noise term contains all possible outcomes with some
probability. However, the probability of finding the correct
answer from the noise term must be at least exponentially
small with N . Otherwise, there would be no need to pre-
pare the computer at all: one could find the correct answer
from the noise term simply by repeating the computation a
polynomial number of times. In fact, if the probability of
finding the correct answer from the noise term did not be-
come exponentially small with N , we could dispense with
the computer altogether. For using a classical probabilistic
protocol which selected from all the possibilities at ran-
dom, we would get the correct answer with probability of
the order of one with only a polynomial number of trials.

Thus, we may say that the probability of finding the
correct answer from the state (4) is essentially e and so
the computation must be repeated 1

e times on average to
find the correct answer with probability of order one.

We now consider whether reaching entangled states dur-
ing the computation is a necessary condition for exponen-
tial speed-up. We address this by investigating what can
be achieved with separable states. Specifically, we impose
the condition that the pseudopure state remains separable
during the entire computation. For an important class of
computational protocols, we show that this condition im-
plies an exponential amount of noise.

The protocols which we consider use n � n1 1 n2
qubits of which n1 are considered to be the input registers,
and the remaining n2 the output registers. We assume that
n1 and n2 are polynomial in the number N which describes
how the classical problem scales. As stated earlier, we
consider problems in which the quantum protocol gives an
exponential speed-up over the classical protocol, specifi-
cally the classical protocol is exponential in N whereas the
quantum protocol is polynomial in N . (For example, in
the factorization problem, the aim is to factor a number of
the order of 2N . The classical protocol is exponential in N
and, in Shor’s algorithm, n1 and n2 are linear in N .)

We first describe the protocols as applied to pure states.
The first steps are as follows:

(1) Prepare system in the initial state:

jC0� � j00 · · · 0� ≠ j00 · · · 0� . (6)

(2) Perform a Hadamard transform on the input register,
so that the state becomes

jC1� �
1

2n1�2

2n1 21X
x�0

jx� ≠ j00 · · · 0� . (7)

(3) Evaluate the function f: �0, 1�n1 ! �0, 1�n2 . The
state becomes

jC2� �
1

2n1�2

2n1 21X
x�0

jx� ≠ jf�x�� . (8)
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Now consider the protocol when applied to a mixed state
input. Thus, the initial state r0 is

r0 � �1 2 e�M2n 1 ejC0� �C0j , (9)

where jC0� is given in (6), and M2n is the maximally mixed
state in the 2n dimensional Hilbert space. After the second
computational step the state is

r0 � �1 2 e�M2n 1 ejC2� �C2j . (10)

Consider now protocols in which the function f�x� is not
constant. Let x1 and x2 be values of x such that f�x1� fi

f�x2�. Thus we may write the state jC2� as
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jC2� �
1

2n1�2 �jx1� jf�x1�� 1 jx2� jf�x2�� 1 jCr �� , (11)

where jCr � has no components in the subspace spanned
by jx1� jf�x1��, jx1� jf�x2��, jx2� jf�x1��, jx2� jf�x2��. It is
convenient to relabel these states and write

jC2� �
1

2n1�2 �j1� j1� 1 j2� j2� 1 jCr �� , (12)

where jCr � has no components in the subspace spanned
by j1� j1�, j1� j2�, j2� j1�, j2� j2�.

We now derive a necessary condition on e for the state
of the system to be separable throughout the computation.
For consider projecting each particle onto the subspace
spanned by j1� and j2�. The state after projection is
r 0
2 �

1
A

∑
4�1 2 e�

2n11n2
M4 1

2e

2n1

µ
j1� j1� 1 j2� j2�

p
2

∂ µ
�1j �1j 1 �2j �2j

p
2

∂∏

� �1 2 e0�M4 1 e0

µ
j1� j1� 1 j2� j2�

p
2

∂ µ
�1j �1j 1 �2j �2j

p
2

∂
, (13)
where

A �

µ
4�1 2 e�

2n11n2
1

2e

2n1

∂
(14)

is the normalization factor, M4 is the maximally mixed
state in the four-dimensional Hilbert space spanned by
j1� j1�, j1� j2�, j2� j1�, j2� j2�, and

e0 �
2e

2n1 A
�

e

�1 2 e�22n211 1 e
. (15)

Now a two qubit state of the form

�1 2 d�M4 1 d

µ
j1� j1� 1 j2� j2�

p
2

∂ µ
�1j �1j 1 �2j �2j

p
2

∂

(16)

is entangled for d . 1�3. Therefore the original state (10)
must have been entangled unless

e0 # 1�3 ) e #
1

1 1 2n2
, (17)

since local projections cannot create entangled states from
unentangled ones.

Therefore we conclude that, if we have a computational
protocol (for nonconstant f) starting with a mixed state
of the form (9) and if we require that the state remains
separable throughout the protocol, then we certainly need

e #
1

1 1 2n2
. (18)

However, we have shown earlier that, even in favorable
circumstances, a computation with noise e takes of the
order of 1�e repetitions to get the correct answer with
probability of the order of one.

Thus, we reach our main result that computational pro-
tocols of the sort we have considered require exponentially
many repetitions. So no matter how efficient the original
pure-state protocol is, the mixed-state protocol, which is
sufficiently noisy that it remains separable for all N , will
not transform an exponential classical problem into a poly-
nomial one.

We note that, while we have considered protocols of a
specific form, many of the details are unimportant. As long
as the number of qubits n1 and n2 in the output register is
polynomial in the number N which governs the classical
problem, and the pure-state protocol goes through a state
which has a non-negligible amount of entanglement, simi-
lar conclusions can be drawn.

We repeat here that our conclusions apply only to sepa-
rable states of pseudopure-state form (1). We have nothing
to say at this stage about separable states of other forms.
We have also considered only exponential speed-up so that
our results do not apply to Grover’s algorithm, for example
[11]. Furthermore, we cannot rule out the possibility of the
future discovery of more efficient algorithms of Shor type
to which our results do not apply.

We have shown earlier that having entanglement is a
necessary condition. Is it sufficient? Our earlier results
show that it is not. As long as the noise is exponential
(i.e., e decreases exponentially with n), the computation
has to be repeated an exponential number of times, even
if entangled states are reached during the computation (we
note that it is known that there are entangled states with an
exponential amount of noise [6]).

Finally, let us return to NMR quantum computation
which gave rise to the issues we have been discussing.
In our previous discussion we had in mind that one
has a single quantum computer and 1�e then gives the
number of times the computation has to be repeated. In
NMR, each molecule in the sample is considered to be a
047901-3



VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001
quantum computer. Here, rather than repeating the com-
putation on the same computer, one treats a large number
of computers in parallel. Thus, 1�e would be the number
of individual molecular computers one would need in the
sample.

However, the NMR scheme has a number of difficul-
ties beyond those we have discussed above concerning the
measurement of the final state of the system. In fact, rather
than being able to address each molecule individually, as
we have assumed in our discussion above, one can mea-
sure only bulk properties of the sample.

For example, suppose the computational protocol re-
quires measuring the first qubit in the computational basis.
In the discussion above, we supposed that such a measure-
ment can be performed. In NMR the first qubit is realized
as the spin of, say, the first nucleus in the molecule. But
we cannot measure the spin of each molecule. Rather, we
can measure only the total spin of this nucleus (i.e., over
all molecules in the sample). Furthermore, of course, we
cannot measure this total spin exactly; we can make only
macroscopic measurements; i.e., we can find only the value
of this total spin with a broad resolution.

Overall, these factors mean that NMR has a far less
favorable situation than we have assumed in the general
discussion above. Thus, 1�e is a lower bound on the
sample scaling required.

The usual construction of pseudopure states in NMR has
e � n

2n . In light of the discussion in the previous para-
graph, the sample size would therefore have to grow expo-
nentially with n. Thus, this framework does not allow one
to convert exponential classical problems into polynomial
ones via Shor-type protocols.
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Of course, other ways of using liquid-state NMR as a
quantum computer might be found with more favorable
scaling than current techniques. Whether or not this is
possible is obviously beyond the scope of this paper.

We are grateful to Sam Braunstein, Carlton Caves,
Richard Jozsa, and Ruediger Schack for many illuminating
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in an earlier draft.
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