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We present a general strategy to extend quantum cluster algorithms for S � 1

2
spin systems, such as the

loop algorithm, to those with an arbitrary size of spins. The partition function of a high-S spin system
is generally represented by the path integral of a S �

1

2
model with special boundary conditions in the

imaginary-time direction. We introduce additional graphs for the boundary part and give the labeling
probability explicitly, which completes the algorithm together with an existing S �

1

2
algorithm. As a dem-

onstration, we simulate the integer-spin antiferromagnetic Heisenberg chains. The magnitude of the first
excitation gap is estimated to be 0.41048(6), 0.08917(4), and 0.01002(3) for S � 1, 2, and 3, respectively.
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The world-line quantum Monte Carlo (QMC) method is
one of the most powerful tools in numerical investigations
of quantum spin systems [1]. One of the main advantages
of the QMC method over other numerical ones, such as ex-
act diagonalization and the density matrix renormalization
group (DMRG) method, is that it is applicable to rather
large systems in any dimensions and can estimate their
physical quantities statistically exactly. However, the con-
ventional algorithm, based on local updates of spin con-
figurations (world lines), suffers from strong correlations
between successive configurations at low temperatures or
in the vicinity of a second-order phase transition. The di-
verging autocorrelation time virtually makes simulations
slower and slower, and finally it becomes practically im-
possible to simulate larger systems at lower temperatures.
This drawback is called critical slowing down.

Recently, the inventions of the loop algorithm [2,3] and
of its continuous-time variant [4] have led to a great im-
provement of the QMC techniques for the S � 1

2 XXZ
model [5]. The loop algorithm, which is a kind of cluster
algorithm, realizes updates of the configuration by flipping
nonlocal objects, referred to as loops. It has been shown
that it is fully ergodic and drastically reduces the autocorre-
lation time, often by orders of magnitude, especially at low
temperatures. Furthermore, by using the continuous-time
version of the algorithm, one can completely eliminate the
discretization error originating from the Suzuki-Trotter de-
composition; simulations can be performed directly in the
so-called Trotter limit.

In general, it is a highly nontrivial task to construct an
efficient cluster algorithm for a given system, because sym-
metry or special properties of the target system should be
taken into account explicitly in its construction. As for the
spin systems, the development of cluster algorithms for
higher-S models remains an important and challenging
problem. A cluster algorithm for the general-S XXZ model
in the discrete-time formulation has been proposed by
Kawashima and Gubernatis [6]. Unfortunately, their algo-
rithm is rather complicated (105 different graphs appear
even in the S � 1 case), and moreover the Trotter limit is
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not well defined in the algorithm. Another type of algorithm
in the discrete-time representation was used in Ref. [7].

More recently, Harada et al. proposed a continuous-time
loop algorithm for the S � 1 antiferromagnetic Heisen-
berg model [8], in which the S � 1 system is mapped into
a path integral of an S �

1
2 system with special boundary

conditions in the imaginary-time direction. In this Letter,
we generalize their method to construct cluster algorithms
for systems with arbitrary size of spins. For simplicity, we
consider a spin-S antiferromagnetic Heisenberg model on
a bipartite lattice as an example. Generalization to other
models is straightforward, as discussed later.

We consider the Hamiltonian of Ns spins and Nb bonds,
defined as follows:

H � 2

NbX
�i,j�

�Sx
i Sx

j 1 S
y
i S

y
j 2 Sz

i Sz
j � , (1)

where Sa
i (a � x, y, z and i � 1, . . . , Ns) is the a com-

ponent of the spin- S operator at site i.
In order to construct a cluster algorithm for S .

1
2 , it is

crucial to represent each spin operator Sa
i as a sum of S �

1
2

Pauli operators �sa
i,m�. Following Ref. [6], we substitute

Sa
i �

1
2

P2S
m�1 s

a
i,m into the Hamiltonian (1), which yields

the following Hamiltonian of 2SNs spins and 4S2Nb bonds:

H̃ � 2
1
4

NbX
�i,j�

2SX
m,n�1

�sx
i,msx

j,n 1 s
y
i,ms

y
j,n 2 sz

i,msz
j,n� .

(2)

Hereafter, we refer to the S �
1
2 spins in Eq. (2) as sub-

spins. In terms of the Hamiltonian (2) defined on the ex-
tended phase space, the partition function of the original
Hamiltonian (1) can be expressed as

Z � Tr�exp�2bH̃ �P� . (3)

Here, we introduce a projection operator P, which is
a direct product of local symmetrization operators �Pi�
�i � 1, . . . , Ns�. Each Pi acts on 22S-dimensional Hilbert
space spanned by �sz

i,m� �m � 1, . . . , 2S�, and projects out
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unphysical states with S2
i , S�S 1 1�. Note that P

commutes with H̃ , because H̃ is invariant under the
exchange of subspin indices at each site by definition.

By applying a Suzuki-Trotter decomposition for the ex-
ponential operator in Eq. (3) and inserting complete sets
of eigenstates of �sz

i,m� between the exponential factors,
we obtain the following path-integral representation of the
partition function:

Z �
X
C

W �C �P�≠C � , (4)

where C � �Ci,m,t� (i � 1, . . . , Ns, m � 1, . . . , 2S, and
0 # t # b) denotes a world-line configuration of sub-
spins, and ≠C � �Ci,m,0,Ci,m,b� (i � 1, . . . , Ns and m �
1, . . . , 2S) denotes a configuration of subspins at the
boundaries in the imaginary-time direction. We take the
continuous-imaginary-time representation, and Ci,m,t de-
notes the mth subspin direction (11 or 21) at the ith site
and imaginary time t. The weight P�≠C � �

Q
i Pi�≠Ci�

originates from the projection operator P, which can be
interpreted as soft boundary conditions in the imaginary-
time direction. Each �4S�-body local boundary weight
Pi�≠Ci� takes a value of the inverse of the number of
different configurations which are connected with ≠Ci by
permutation operations, i.e.,

Pi�≠Ci� �

(
�2S2ni �! ni !

�2S�! if ni,0 � ni,b �
 ni�
0 otherwise,

(5)

where ni,t �
P

m Ci,m,t.
Note that, apart from the boundary conditions, the

weight W �C � is completely equivalent to what appears in
the path-integral representation of the system described
by the Hamiltonian (2). Therefore, for that part, we adopt
the same labeling rule as the original S �

1
2 continuous-

time loop algorithm [4], which assigns a “graph” GW to a
configuration C with labeling probability

TW �GW jC � �
VW �GW �DW �C ,GW �

W �C �
. (6)

Here, we follow the general framework of cluster algo-
rithms presented in Ref. [9]. The weight VW �GW � is C

independent and non-negative, and DW �C ,GW � is a com-
patibility function, which takes 0 or 1. They satisfy

W�C � �
X
GW

VW �GW �DW �C ,GW � (7)

for any C . By this procedure the �d 1 1�-dimensional
space is decomposed into a set of loops. Note that, at this
stage, some of the loops remain open, because we have not
defined any graphs for the boundary part.

Next, for each local boundary weight Pi�≠Ci�, we in-
troduce �2S�! types of graphs �GPi � �i � 1, . . . , Ns�, each
of which consists of 2S edges connecting one of the sub-
spins at t � 0 to a subspin at t � b one-by-one (Fig. 1).
We define a compatibility function DP�≠Ci ,GPi � so that it
takes one if every edge connects two subspins which have
an identical direction, or it takes zero otherwise. By using
047203-2
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FIG. 1. Six graphs for the local boundary weight for S � 3

2
.

The upper (lower) three circles denote subspins at t � 0 (b).
In general, �2S�! graphs can be labeled uniquely in terms of
corresponding permutations of 2S integers, as shown in the
bottom row.

this compatibility function, we can decompose the local
boundary weight as

Pi�≠Ci� �
X
GPi

DP�≠Ci ,GPi �	�2S�! , (8)

because the number of compatible graphs for a configura-
tion ≠Ci is given by �2S 2 ni�! ni!. We take the labeling
probability for the local boundary weight as

TP�GPi j≠Ci� �
DP�≠Ci,GPi �	�2S�!

Pi�≠Ci�
�

DP�≠Ci,GPi�
�2S 2 ni�!ni!

,

(9)

that is, a graph is assigned out of the graphs compatible
with ≠Ci with equal probability. These boundary graphs
cause the remaining opened loops to be closed. By choos-
ing the flipping probability to be free, that is, flipping
spins on each loop simultaneously with probability 1

2 ,
one can show that the present stochastic process satisfies
the detailed-balance condition [9].

The present algorithm includes the loop algorithm for
the S � 1 antiferromagnetic Heisenberg model by Harada
et al. [8] as a special case. However, as already seen, this
strategy does not depend much on the details of the model
one considers; one can easily construct a cluster algorithm,
if the mapped S �

1
2 model has a cluster algorithm, which

covers a model with general XYZ interaction or single-ion
anisotropy [10], and the transverse-field Ising model [11].
It can also be applied for a system with random sizes of
spins and even for the classical Ising model [12,13]. The
resulting general-S algorithm is ergodic, if the S �

1
2

cluster algorithm lying at the base is ergodic. The details
of the algorithm for these models and the proof of its er-
godicity will be presented elsewhere [10]. Note that the
number of graphs introduced for the local boundary weight
increases quite rapidly as S increases. However, the com-
putational time in selecting a graph to be assigned is merely
proportional to S, because the procedure is nothing but the
random-permutation generation [14].

As an application of the algorithm, we simulated the an-
tiferromagnetic Heisenberg chains with S � 1, 2, and 3. It
was conjectured by Haldane [15] that the antiferromagnetic
Heisenberg chain of integer spins has a finite excitation gap
D�S� above its unique ground state, and the antiferromag-
netic spin correlation along the chain decays exponentially
with a finite correlation length jx�S�. For S � 1 and 2,
a number of numerical studies have been accomplished
(e.g., see [16–19]) to confirm the validity of Haldane’s
047203-2
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conjecture. However, estimation of the first excitation gap
of higher-spin chains has not yet been successful, since the
magnitude of D�S� is considered to become exponentially
small as S increases [15].

Consider a spin-S chain of L sites at temperature T
�� 1	b�. We assume L is even. The correlation function
of the staggered magnetization in the imaginary-time
direction,

C�t; L, b� �
1

L2b

LX
i,j�1

Z b

0
dt��21�ji2jjSz

i �t�Sz
j �t 1 t�� ,

(10)

is an even function of t, and it satisfies C�t 1 b; L, b� �
C�t; L, b�. At sufficiently low temperatures, the correla-
tion function is expressed well as a sum of exponential
functions, that is,

C�t; L, b� �
X
i�0

ci cosh

∑
t 2 b	2
jt,i�L�

∏
for b ¿ jt,0 .

(11)

Here, we assume jt,0 . jt,1 . jt,2 . . . . without loss of
generality. The coefficients �ci� are directly related to the
dynamic structure factor at momentum k � p. In terms
of jt,0�L�, the gap to be estimated is given by

D � lim
L!`

1
jt,0�L�

. (12)

In general, to solve Eq. (11) directly is extremely ill
posed [20]. However, as shown below, we can construct a
systematic series of estimators, at least for jt,0�t�, if the
coefficient ci in Eq. (11) converges to zero rapidly enough
for large i, and also if the difference between jt,0�L� and
jt,1�L� remains finite even in the thermodynamic limit.
For S � 1, these two conditions are numerically shown to
be satisfied [21]. We expect similar situations for higher
S, although there is no exact argument.

For a given L, the well-known second-moment estimator
[22] of the correlation length,

ĵ�2�
t �

b

2p

s
C̃�0�

C̃�2p	b�
2 1 , (13)

converges to jt,0�L� in the low-temperature limit, besides
systematic corrections of O�aijt,i	jt,0� �i � 1, 2, . . .�.
Here, C̃�v� is the Fourier transform of the imaginary-time
spin correlation function, i.e., C̃�v� �

Rb
0 C�t�eivt dt.

In the present algorithm, C̃�v� can be measured directly
by means of the improved estimator [23], which reduces
the variance of the data greatly. We also consider a
fourth-moment estimator:

ĵ�4�
t �

b

4p

s
3

C̃�0� 2 C̃�2p	b�
C̃�2p	b� 2 C̃�4p	b�

2 1 , (14)

which has smaller corrections of O�ai�jt,i	jt,0�3�. Con-
struction of higher-order estimators is possible in a
straightforward way [10].
047203-3
The temperature dependence of ĵt�L, T� and also of the
correlation length along the chain, ĵx�L, T�, is shown in
Fig. 2. In the present simulation, the system size is taken
as L � 2S	T. The integrated autocorrelation time of C̃�0�
is of order unity and no significant sign of its growth is
observed for larger L and 1	T . Measurement of physical
quantities is performed after discarding the first 103 Monte
Carlo steps (MCS) for thermalization. One Monte Carlo
step of the S � 3 chain with L � 5792 and T �
0.0010359, which is mapped to the system of 34 752 sub-
spins and 208 512 bonds prior to the simulation, takes
about 16 s on 256 nodes of the Hitachi SR-2201.

As seen clearly in Fig. 2, ĵt�L, T � and ĵx�L, T� con-
verge quite rapidly (probably exponentially) to a finite
value for small T . We observe that for each S the data
which satisfy the conditions, 1	T . 6ĵt and L . 6ĵx, ex-
hibit no temperature (and system-size) dependence besides
statistical fluctuations. The difference between the second-
moment estimate [Eq. (13)] and the fourth-moment esti-
mate [Eq. (14)] is invisible in the vertical scale of Fig. 2.
The difference between these two estimates at the lowest
temperature is about 0.2% and 0.1% for S � 1 and S � 2,
respectively. For S � 3, both coincide within the statisti-
cal errors. Furthermore, it is confirmed that there is no
significant difference between the fourth-moment estimate
and the sixth-moment estimate, even for S � 1.

Thus, by using the fourth-moment estimator, we con-
clude that

D�S� �

8<
:

0.41048�6� for S � 1
0.08917�4� for S � 2
0.01002�3� for S � 3

(15)

is the magnitude of the Haldane gap. The results for other
physical quantities, such as the energy density and the
staggered susceptibility, are presented in Table I. It should
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FIG. 2. Temperature dependence of the spatial correlation
length jx (open symbols) and the temporal correlation length
jt (solid symbols) of the S � 1 (squares), 2 (triangles), and
3 (diamonds) antiferromagnetic Heisenberg chains. Statistical
error of each data point is smaller than the linewidth. The
system size is taken as L � 2S	T .
047203-3



VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001
TABLE I. Ground-state energy density E	L, staggered susceptibility xs , spatial correlation length jx , and first excited gap D of
the S � 1, 2, and 3 antiferromagnetic Heisenberg chains. Note that, for each S, the physical quantities are estimated by a single
Monte Carlo run on the system of size L at temperature T , which are presented in the second and third columns, respectively.

S L T MCS E	L xs jx D

1 128 0.0156250 2 3 107 21.401481�4� 18.4048(7) 6.0153(3) 0.41048(6)
2 724 0.0055249 2 3 106 24.761249�6� 1164.0(2) 49.49(1) 0.08917(4)
3 5792 0.0010359 3 3 104 210.1239�1� 158000(310) 637(1) 0.01002(3)
be emphasized that the present results are obtained without
any extrapolation procedure; they are simply obtained by a
single Monte Carlo run on the largest system at the lowest
temperature for each S.

For S � 1, the present estimate is completely consistent
with 0.41050�2� and 0.41049�2� obtained by the DMRG
calculation [16] and by the exact diagonalization [17], re-
spectively. For S � 2, on the other hand, the numerical
uncertainty in the present estimate is much smaller than in
the previous studies (see, e.g., Table I in Ref. [19]). Fur-
thermore, our estimate is slightly larger than 0.0876�13�,
which is obtained by the most recent DMRG calculation
[19]. In the DMRG study, for some technical reasons, open
boundary conditions were used, which are known to give
quite large systematic corrections compared to the peri-
odic boundary conditions. The reason for the disagreement
might be due to an inappropriate scaling assumption in the
DMRG study. Finally, as for the S � 3 case, it might be
practically impossible to estimate the value of the gap by
other numerical methods. Our result is completely new to
the best of our knowledge.
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