
VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001

046
Effects of Stochastic Webs on Chaotic Electron Transport in Semiconductor Superlattices
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We investigate chaotic electron transport in the lowest miniband of a semiconductor superlattice with
a tilted magnetic field. This experimentally accessible non–Kolmogorov-Arnol’d-Moser system involves
only stationary electric and magnetic fields, but is dynamically equivalent to a time-dependent kicked
harmonic oscillator. The onset of chaos strongly delocalizes the electron orbits, thus raising the electrical
conductivity. When the cyclotron and Bloch frequencies are commensurate, the phase space is threaded
by a stochastic web, which produces a further resonant increase in the conductivity.
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Until 1992, most experimental studies of quantum sy
tems with chaotic classical dynamics were performed
highly excited hydrogenic atoms [1]. Since then, advan
in semiconductor nanostructure fabrication and in the la
cooling of atoms [2] have widened the scope of experim
tal quantum chaology. In semiconductor physics, chao
electron transport has been explored in quantum dots
antidot arrays [1,3–6], resonant tunneling diodes [7], a
doped [8] or driven [9] superlattices (SLs). Despite t
diversity of these experiments, they all involve systems
which the transition to chaos occurs by the gradual destr
tion of stable islands in accordance with the Kolmogoro
Arnol’d-Moser (KAM) theorem [1]. There is also a
different class of chaotic dynamics for which the KAM
theorem is inapplicable. These “non-KAM” systems a
of great interest due to applications in plasma physics
tokamak fusion [10,11], turbulent fluid dynamics [10
ion traps [12], and quasicrystals [10]. But their quantu
properties are not well understood [13] and have ne
been investigated experimentally.

In this Letter, we show that electrons in a GaAs��Al 0.3-
Ga0.7�As SL with a magnetic fieldB applied at an angle
u to the SL axis provide an experimentally accessib
non-KAM system. The Hamiltonian originates from a
intrinsically quantum-mechanical property of the SL: dis-
persion of the electronic minibands (MBs). For electro
confined to a single MB, the motion reduces to a on
dimensional (1D) simple harmonic oscillator (SHO) drive
by a plane wave. Increasingu from 0± raises the driving
force, thereby inducing chaotic dynamics which delocal
the electron orbits. This increases the drift velocity a
conductivity. When the Bloch and cyclotron frequenci
are commensurate, the electrons undergo diffusive mo
through a stochastic web (SW) in phase space [10]. T
produces additional resonant increases in the drift veloc
which should be detectable in experiment.

Figure 1 shows the electronic potential energy and lo
est MB for a three-terminal SL structure [14]. The S
layers contain wells (barriers) of widthw � 9.3 nm (b �
1.3 nm). Three-terminal SLs are ideal for studying e
ergy band transport because the electrons can be inje
directly into a single MB with a small range of energie
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proportional to the emitter-base voltageVb, which can be
controlled independently of the voltageV across the un-
doped SL layers.

Within the tight-binding approximation, the energy
wave-vector dispersion relation for the first MB i
E�k� � D�1 2 coskxd��2 1 h̄2�k2

y 1 k2
z ��2m, where

D � 26.2 meV is the MB width,d � w 1 b, andm �
0.067me is the effective mass for motion in they-z plane
parallel to the layers. We investigated electron motion,
an electric fieldF ~ V antiparallel to the SL (x) axis and
a tilted magnetic fieldB � �B cosu, 0, B sinu�, with F and
B small enough to neglect inter-MB tunneling. The effe
tive classical Hamiltonian is obtained fromE�k� by
adding the electrostatic potential energy and making
substitution p � h̄k ! p 1 eA � q, where e is the
magnitude of the electronic charge and the vector poten-
tial A � �0, xB sinu 2 zB cosu, 0�. In this gauge py is
conserved and the problem reduces to two–dimensional
(2D) (x, z) motion described by the Hamiltonian

H�x, z, px , pz� � ET �
D

2

µ
1 2 cos

pxd

h̄

∂
1

p2
z

2m
1

mv2
c

2

3 �x sinu 2 �z 2 z0� cosu�2 2 eFx ,
(1)

where vc � Be�m and z0 � py�eB cosu. The form of
the classical orbits is independent of z0 and ET , which we

FIG. 1. Schematic conduction band diagram showing electron
energy Ee versus x in a three-terminal SL under bias. Shaded
regions: energy ranges of lowest SL MB and electrons in n1

emitter, base, and collector contacts. Inset: orientation of B.
© 2001 The American Physical Society 046803-1
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set to zero. Hamilton’s equations show that pz satisfies an
equation of motion

d2pz

dt2 1 �vc cosu�2pz � 2
mv2

cDd sin2u

4h̄

3 sin�Kpz 2 vBt 2 f� , (2)

corresponding to a 1D SHO driven by a time- (t-) depen-
dent plane wave of wave number K � d tanu�h̄, angu-
lar frequency equal to the Bloch frequency vB � eFd�h̄,
and phase f � d�px �t � 0� 1 pz�t � 0� tanu��h̄. This
non-KAM kicked harmonic oscillator (KHO) has attracted
wide theoretical study [10–13,15], but has never been re-
alized in a quantum system.

Classical electron motion in the SL depends only on
Eq. (2) because the solution, pz�t�, determines x�t�,
z�t�, and px�t� for all u fi 0±. Figure 2 shows Poincaré
sections (PSs) generated for a range of u by plotting pz and
qy � mdy�dt � �vc cosu�21dpz�dt � 2eB�z cosu 2
x sinu� either when px � 0 [Figs. 2(a)–2(d)] or at dis-
crete times spaced by the SHO period T0 � 2p�vc cosu
[Figs. 2(e) and 2(f)]. We use these two types of PS in
order to display the phase space most clearly. In each PS,
the distance of each point from the origin equals the lateral
momentum pL � �q2

y 1 p2
z �1�2, which determines the

total energy p2
L�2m of the KHO. In Figs. 2(a)–2(d), this

distance also gives the electron position x � p2
L�2meF.

When u � 0±, the plane wave in Eq. (2) is absent and
the motion separates into cyclotron oscillations along z
and Bloch oscillations along x [Fig. 3(a)]. Because pL

is conserved, points in the PS [Fig. 2(a)] lie on concentric
circles. When B � 2 T, the SHO is only weakly perturbed
by the plane wave for u & 35±. The phase space for u �
30± [Fig. 2(b)] is therefore regular, and the corresponding

FIG. 2. PSs for B � 2 T and (a) u � 0±, F � 4.8 3
105 V m21; (b) u � 30±, F � 4.9 3 105 V m21; (c) u � 45±,
F � 4.9 3 105 V m21; (d),(e) u � 60±, F � 4.9 3
105 V m21; (f) u � 30±, F � 2.82 3 105 V m21. Initial
conditions in (d)–(f) are chosen so that f � 0. Vertical gaps
in (b)–(d) are a consequence of energy conservation.
046803-2
electron orbits [Fig. 3(b)] are qualitatively similar to those
for u � 0±.

When u � 45±, the plane wave in Eq. (2) has maximal
amplitude. But it still only weakly perturbs high-energy
KHO orbits with pL * 7 3 10226 kg ms21. These orbits
are therefore stable and generate invariant curves in the PS
[Fig. 2(c)]. Lower energy orbits are strongly perturbed by
the plane wave and produce the chaotic sea in Fig. 2(c).
These orbits [Fig. 3(c)] extend much farther along the SL
axis than the Bloch oscillations at u � 0±, because the
tilted magnetic field transfers momentum between the x
and z directions. This corresponds to the transfer of en-
ergy between the KHO and the plane wave in Eq. (2). The
six outermost stable loops in Fig. 2(c) enclose the chaotic
sea (and four stable islands), thereby limiting the x am-
plitude of the unstable orbits. But when u is increased

FIG. 3. Electron orbits in the x-z plane for B � 2 T and
(a) u � 0±, F � 4.8 3 105 V m21; (b) u � 30±, F � 4.9 3
105 V m21; (c) u � 45±, F � 4.9 3 105 V m21; (d) u � 60±,
F � 4.9 3 105 V m21; (e) u � 30±, F � 2.82 3 105 V m21.
The upper horizontal line shows scale of orbits (a)–(c) and (e).
The lower line shows the scale of orbit (d), which is reduced
by a factor of 2. Inset: orientation of B.
046803-2
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to 60±, so that vB � 3vc cosu for the F and B values
used in Figs. 2(d) and 2(e) (which show different PSs con-
structed from the same orbits), the chaotic sea is no longer
bounded. It forms a SW whose filaments extend farther
from the origin (in principle, to infinity) as time increases.
Figures 2(d) and 2(e) show that part of the SW formed over
104 periods T0. Its filaments enmesh stable islands, which
are remnants of the invariant curves found for smaller u.
Since an electron can diffuse ad infinitum along the SW
filaments, it can, in principle, travel arbitrarily far along x.

The phase space of the KHO contains an infinite SW
whenever the resonance condition vB � nvc cosu (n �
1, 2, 3, . . .) is satisfied [10]. In stroboscobic PSs, such as
Figs. 2(e) and 2(f), the SW contains both ringlike and 2n
radial filaments [10,16]. The width of the filaments
f�pL, u� � exp�2�pL�a tan3u�1�2�, where a � 1.7 3

10227 kg ms21 for the SL considered here [10]. In
Fig. 2(e), the filaments are so thick near the web center
that they overlap to form a chaotic core, similar to that in
Fig. 2(c). Outside this core, f decreases so rapidly that
electrons rarely diffuse farther than �10225 kg ms21 from
the origin, which corresponds to an x displacement of
�100d.

Figure 3(d) shows a finite part of the chaotic trajectory,
starting from rest, which generates the SW in Figs. 2(d)
and 2(e). This orbit extends approximately 4.5 times far-
ther along x than that in Fig. 3(c), which is confined to
the chaotic core of Fig. 2(c) [note that, in Fig. 3, the scale
of orbit (d) is compressed by a factor of 2]. Figure 2(f)
shows an n � 1 SW for u � 30±. This angle is small
enough to produce narrow web filaments (even near the
origin) which confine the electrons to delocalized quasi-
regular orbits [Fig. 3(e)]. At each resonance, unbounded
diffusion through the SW enables electrons to progress
rapidly through the SL. But moving F, B, or u off reso-
nance destroys the SW, thereby localizing the electrons and
impeding their flow. Changing these parameters should
therefore modulate the electron drift velocity yd, which is
proportional to the scattering-induced current I [14].

To quantify this effect, we calculated yd for electrons
starting from rest by using the kinetic formula [17]

yd � t21
Z `

0
exp�2t�t�yx �t� dt , (3)

where yx�t� � h̄21≠E���k�t�����≠kx , and the scattering time
t � 1 ps is determined from experiment [14]. We empha-
size that similar results are obtained for a wide range of
initial conditions.

When u � 0±, Eq. (3) gives the Esaki-Tsu yd�F� re-
lation [18], shown by the dashed curve in Fig. 4. This
curve has a maximum at the field FB � 6.2 3 104 V m21

for which vBt � 1. When F & FB, for all u, the elec-
trons traverse only short, almost linear, orbital segments
before scattering, and so the distinction between regular
and chaotic trajectories is lost. Consequently, in Fig. 4, the
046803-3
FIG. 4. Dashed (dotted) [solid] curves: yd�F� for u � 0± (30±)
[45±] and B � 2 T. Solid (dotted) arrows mark expected posi-
tions of resonant peaks for u � 45± (30±) with specified n and r .
Inset: electron orbits in x-z plane for 0 , t , 4t and u � 45±,
with F � 2.3 3 105 V m21 (left) and 5 3 105 V m21 (right).
The horizontal line shows a peak-to-peak amplitude of Bloch
oscillation at F � 5 3 105 V m21.

yd�F� plots are all approximately Ohmic when F & FB.
In this regime, yd is lower when u fi 0± because the
in-plane (z) component of B bends the electron trajecto-
ries and transfers momentum out of the x direction [17].
For F * 2FB, the yd�F� curves for u � 30±, and 45± lie
well above the 0± trace because the mean-free path is long
enough to ensure that electrons in chaotic trajectories travel
farther along x before scattering than those performing
Bloch oscillations. To illustrate this, the right-hand orbit in
the (boxed) inset of Fig. 4 shows an unstable trajectory for
u � 45± and F � 5 3 105 V m21 over the time interval
0 , t , 4t which dominates the integral in Eq. (3). The
x displacement of an electron in this orbit is �5 times the
amplitude of the corresponding 0± Bloch oscillation (hori-
zontal line in Fig. 4 inset). This chaos-induced orbital de-
localization increases yd and the electrical conductivity.

When u � 45±, yd�F� has a pronounced maximum
(upward solid arrow in Fig. 4) at F � 2.3 3 105 V m21.
For this F, vB � vc cosu (n � 1 resonance), and the
phase space contains an unbounded SW similar to that in
Fig. 2(f). The electron undergoes rapid diffusive motion
through the SW (left-hand orbit in Fig. 4 inset), and so
travels farther along x before scattering than when F is
off resonance. The n � 2 resonance at u � 45± also pro-
duces a clear peak in yd�F� (right-hand arrow in Fig. 4).
When u � 30±, yd�F� contains a large n � 1 maximum
(downward dotted arrow in Fig. 4) originating from the
unbounded quasiregular trajectory in Fig. 3(e).

When vB � rvc cosu where r is a noninteger rational
number, the PSs contain a finite SW which, though en-
closed by stable islands [11], delocalizes the electrons suf-
ficiently to generate peaks in yd�F�. In Fig. 4, the 45±

yd�F� curve reveals r � 0.5 and 1.5 resonant peaks, plus
weaker features associated with other r values. The 30±

trace has a small maximum near the r � 0.5 resonance.
Figure 5 shows color contour plots of yd�F,u� for a

range of B. A small field of 0.5 T [Fig. 5(a)] is insufficient
046803-3
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FIG. 5 (color). yd�F, u� [black (low) and red (high)] for B �
(a) 0.5 T, (b) 1 T, (c) 2 T, and (d) 5 T. Solid (dashed) white
curves show loci of numbered n (r) resonances.

to drive the electron motion chaotic. As u increases, the
in-plane component of B transfers more momentum out of
the x direction, and thus the F value required for peak yd
increases [17]. When B � 1 T [Fig. 5(b)], chaotic dif-
fusion through SWs begins to affect the SL conductivity.
The red area of maximal yd is weakly modulated by n � 1
and 2 resonances whose �F, u� loci are shown by the
left-hand and right-hand white curves respectively. The
SW-induced resonant peaks become stronger as B, and the
driving term in Eq. (2), increases. At B � 2 T [Fig. 5(c)],
distinct islands of yd maxima originate from several n �r�
resonances whose loci are shown by solid (dashed) white
curves. The n � 1 (left-hand) island is most pronounced
for 20± & u & 50±. For u & 20±, the driving term in
Eq. (2) is too small to produce rapid SW diffusion. By
contrast, for u * 50±, it is large enough to ensure that the
chaotic paths are extended for all F & 2 3 105 V m21.
Further elongation along x of the orbit at the n � 1 reso-
nance therefore has a negligible effect on yd. A field of
5 T [Fig. 5(d)] produces a complex pattern of peaks origi-
nating mainly from r , 1 resonances.

Since the resonance condition is independent of electron
energy, the peaks in I�V � should be observable when, in a
real device, electrons are injected with a range of energies.
It is also necessary that broadening mechanisms do not dis-
rupt MB conduction. This requires liquid helium tempera-
tures so that t * 1 ps [14] and vBt . 1 for electric fields
low enough to preserve the MB and give negligible Zener
tunneling. The latter condition is easily met by tailoring
the SL composition to provide a large MB gap. Broaden-
ing due to monolayer growth fluctuations can routinely be
made øD. For B � 0 T, I�V � data are in excellent quan-
titative agreement with the Esaki-Tsu curve [14]. Since
our calculations for chaotic electron dynamics are based
046803-4
on the same semiclassical model, the resonances predicted
by our calculations should also be observable for both two-
and three-terminal SLs.

In summary, we have shown that the unique phase space
structure of non-KAM systems can have a pronounced
effect on the conductivity of condensed matter. Despite
involving only time-independent fields, the SL system cor-
responds to a 1D KHO, whose orbits are extended by the
onset of chaos and produce resonant maxima in yd�F�. For
certain B values, quantum suppression of SW diffusion
[15] is expected, and so SLs might provide an experimen-
tally accessible environment for studying quantum chaos
and localization in non-KAM systems. Similar dynamics
might be realized in other periodic systems, including op-
tical lattices [19].
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