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The localization behavior of noninteracting two-dimensional electrons in a random potential and strong
magnetic field is of fundamental interest for the physics of the quantum Hall effect. In order to understand
the emergence of power-law delocalization near the discrete extended-state energies En � h̄vc�n 1

1

2
�,

we study a generalization of the disorder-averaged Liouvillian framework for the lowest Landau level to
N flavors of electron densities (N � 1 for the physical case). We find analytically the large-N limit and
1�N corrections for all disorder strengths: at N � ` this gives an estimate of the critical conductivity,
and at order 1�N an estimate of the localization exponent n.
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The explanation by Laughlin [1] of the integer quan-
tum Hall effect depends upon an understanding of the lo-
calization of electrons by disorder in a strong magnetic
field. Without disorder, the single-electron eigenstates fall
into Landau levels at isolated energies En � h̄vc�n 1

1
2 �,

n � 0, 1, 2, . . . , separated by the cyclotron energy h̄vc.
The effect of a weak disorder potential is to displace some
weight from the d-function peaks at En into localized
states at nearby energies. Extended states persist at en-
ergies En, and the localization length j�E� of states at
energy E diverges as E ! En according to a power law
j�E� ~ �E 2 En�2n. Experimental results on disordered
samples [2] are consistent with the value n � 2.35 6 0.05
obtained from numerical calculations [3,4] on the lowest
Landau level (LLL).

Current belief is that the quantum Hall plateau transi-
tion lies in an entirely different universality class from the
zero-field case, characterized by “two-parameter scaling”
[5,6] and a topological term in the s-model description [6].
In particular, there is now an understanding of the minimal
features required to obtain numerically scaling behavior
near the transition [4], which is in some respects similar to
classical percolation, but with different universal proper-
ties as a result of quantum tunneling and interference [7].
There is also some understanding of the apparent insensi-
tivity to interactions of some critical indices such as n [8].
However, relatively little progress has been made in find-
ing an analytically tractable description of the localization
properties near the critical energy. The subject of this pa-
per is a generalization of the problem to multiple flavors
of electron densities, allowing an analytical approach to
the transition. Our discussion is based on the Liouvillian
approach [9], reviewed below.

The generalization of the disorder-averaged action to N
flavors of electron densities gives a simple mean-field-like
theory in the large-N limit. Other large-N approaches such
as [10] typically generalize the noninteracting problem be-
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fore the disorder average and do not obtain n. At first order
in the small parameter 1�N , we recover anomalous scaling
of the localization length, i.e., a value for the critical ex-
ponent n. Thus we find an analytically tractable quantum
description whose physics seems to connect smoothly in
the parameter N to the plateau transition �N � 1�. The
control parameter 1�N allows a systematic expansion
around N � `, and the large-N limit and 1�N corrections
can be found analytically for all disorder strengths.

The localization properties of electrons at energy E are
contained in the correlation function of the LLL-restricted
density operators r̄q:

P̃�q, t; E� �
2iQ�t�
NLh̄�2 ����Trr̄q�t�r̄2q�0�d�E 2 H����� . (1)

Here NL is the number of states in the LLL (NL ! ` taken
below), � �

p
h̄c�eB, and ���� ���� indicates the quenched dis-

order average.
The Liouvillian approach uses the integral over E of

P̃�q, t; E�:

P̃�q, t� �
Z

dE P̃�q, t; E�

�
2iQ�t�
NLh̄�2 ����Trr̄q�t�r̄2q�0����� . (2)

The key to the approach is that P̃�q, t� still contains in-
formation about electron localization but is more easily
calculated than the fixed-energy quantity P̃�q, t; E�. The
disorder average for the Fourier transform P̃�q,v� was
carried out numerically in [9] and shown to obey the form
v ImP̃�q, v� � v1�2nf�q2�v�, where f is an unknown
scaling function. At mean-field level [9], only diffusion is
found: our model gives a systematic expansion beyond this
mean-field result. A major goal of this paper is to obtain
the prefactor v1�2n by a 1�N expansion of P̃�q, v�.
© 2001 The American Physical Society 046801-1
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The scaling form for P̃�q, v� comes about because at
large R, only states with energies satisfying

jE 2 Ecj

Ec
,

µ
ad

R

∂1�n

(3)

will have j�E� . R and hence contribute to the correlation
function at long enough times. Here ad is a nonuniversal
length set by the disorder potential. Thus the integral over
energy which gives P̃�q, v� is only nonzero in a window
of size proportional to q1�n . For states delocalized on
the scale R � 1�q, P̃�q, v; E� follows ordinary diffusive
scaling (v ImP̃ is a function of q2�v). A prefactor v1�2n

rather than q1�n gives the scaling function a simple form:
for q2 ø v

v ImP̃�q, v� � D�v� �q2 �v� , (4)

with the frequency-dependent diffusion constant D�v� �
D0v1�2n . This form also applies in the classical percola-
tion limit studied by Gurarie and one of us [11].

The LLL-projected density operators r̄q are related
to the operators tq of the magnetic translation group
through [12] r̄q � e2�1�4��2q2

tq. The noninteracting
LLL-projected Hamiltonian is H �

P
q y�2q�r̄q, with y

the Fourier-transformed random potential. Then using the
commutation relation for the operators tq

�tq, tr	 � 2i sin

µ
�2

2
q ^ r

∂
tq1r , (5)
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we obtain the evolution equation for the magnetic transla-
tion operators:

�tq � 2i
X
q0

Gqq0tq0 , (6)

in terms of the Girvian

Gqq0 �
2i

h̄
y�q 2 q0�e2�1�4��2jq02qj2 sin

µ
�2

2
q0 ^ q

∂
.

(7)

Then P̃�q, v� is a one-body correlation function of the
Girvian:

P̃�q, v� �
1

h̄�2 †�qj�v 2 G�21jq�‡ . (8)

Here the states jq� and operator G are defined through
�qjGjq0� � Gqq0 .

Now we take the continuum limit NL ! ` and as-
sume a white-noise disorder potential ����y�q�y�2q����� �
2py2

L2 d�q 1 q0�. The physical frequency v0 is replaced by
the dimensionless combination v � hv0��y. The physi-
cal propagator is P̃�q, v0� �

h�
y P�q, v�, with the di-

mensionless propagator P�q, v� ! 1
v in the clean limit

v ! `. All momenta are dimensionless (scaled by
magnetic length �) in the following.

The result of disorder averaging is an interacting theory
which can be expressed through a functional integral over
both bosonic f and Grassmann c variables [9]:
P�q,v� � 2i
Z

Df̄ Df
Z

Dc̄ Dc f̄qfqe2F�v�,

F�v� � 2iv
Z

dq �f̄qfq 1 c̄qcq� 1
Z

1,2,3,4
f�1, 2, 3, 4� �f̄q1f̄q2fq3fq4 1 2c̄q1f̄q2fq3cq4 1 c̄q1c̄q2cq3cq4	 .

(9)

The effective interaction from disorder averaging is

f�1, 2, 3, 4� �
1
p

e2�1�2�jq12q4j
2

d�q1 1 q2 2 q3 2 q4� sin

µ
1
2

q1 ^ q4

∂
sin

µ
1
2

q2 ^ q3

∂
. (10)

The effect of the additional Grassmann variables (“supersymmetry”) is simply to eliminate processes with more than
one density line. We develop a natural generalization of this interacting problem to N flavors of densities (N � 1 is
the original problem). The N ! ` limit gives an approximate propagator which is similar to the self-consistent Born
approximation of [9]. The utility of the large-N approach is that it gives a systematic expansion in the parameter 1�N
around the diffusive N ! ` result, while at the point N � 1 the theory describes the exact localization properties of the
plateau transition.

The N -flavor generalization of the Lagrangian density is (only the bosonic part is given, for compactness, and the
flavor indices i, j run from 1 to N)

LN � 2ivf̄i
qfi

q 1
f�1, 2, 3, 4�

N
�c1f̄i

q1
f̄j

q2
fi

q3
fj

q4
1 c2f̄i

q1
f̄i

q2
fj

q3
fj

q4
1 c3f̄i

q1
f̄j

q2
fj

q3
fi

q4
	 . (11)

The real coefficients ci in (11) reproduce the correct N ! 1 limit provided that c1 1 c2 1 c3 � 1, so there is a
two-parameter family of generalizations. The vertex with coefficient c3 in (11) does not contribute as N ! ` and does
not seem to affect scaling qualitatively at order 1�N, so it is dropped for simplicity. [13] We specialize to c1 � c2 � 1�2
in what follows: the choice of these coefficients equal is “natural” in that the classes of diagrams selected by the two
vertices have equal weight at order 1�N with N � 1, as they do in the full theory (i.e., all orders in 1�N) at N � 1.
For generic ci the theory has a U�1 j1� 3 SO�N � symmetry, which at the point c3 � 1 (N decoupled systems) becomes
U�N jN�.
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In the N ! ` limit, the diagrams with k interaction lines which contribute to �f̄1
qf1

q� are the diagrams where no
interaction lines cross, which have the maximum k free choices of flavor index (i.e., degeneracy Nk). Only the first
interaction term of (11) affects this limit. The noncrossing propagator sums these diagrams and satisfies an integral
equation depicted graphically in Fig. 1:

PB�q, v� �
1
v

1
PB�q, v�

pv

Z
dq0 sin2

µ
1
2

q ^ q0

∂
e2�1�2� jq2q0j2 PB�q0,v� . (12)
The notation PB�q,v� is that of [9]. In the limit q, v ! 0,
q2 ø v, the noncrossing result PB�q, v� shows diffu-
sive behavior �v ImP � D0q2�v� without the prefactor
v1�2n .

The zeroth-order diffusion constant D0 is a factor of
p

2
smaller here than in the self-consistent Born approxima-
tion of [9] (the calculation there corresponds to the choice
c1 � 1). The resulting estimate of the critical conductivity
at the transition, obtained from D0 and the exact density of
states [14] through the Einstein relation, is sxx � 0.614 e2

h

compared to the numerical result sxx � �0.54 6 0.04�e2

h

[15] and sxx � ��
p

3 e2���4h�	 � 0.433 e2

h of [11]. Al-
though the large-N estimates of sxx from the Liouvillian
are of the right order, it should be noted that (unlike n)
a universal sxx has not yet been found from P�q, v� ob-
tained using numerical diagonalization.

The noncrossing propagator has simple behavior at large
q, where the argument of the integrand in (12) is rapidly
046801-3
oscillatory. In this limit

PB�`, v� �
1
v

1
PB�`, v�2

v
, (13)

or PB�`, v� � 2i 1
v

2 for small v.
The first corrections to the noncrossing propagator have

k 2 1 free choices of index for a diagram of k lines. The
corrections consist of all maximally crossed (MC) dia-
grams of two or more lines (using the noncrossing propaga-
tor) (Fig. 2a), and in addition possible “rainbows” over the
maximally crossed portion (Fig. 2b). The sum of all maxi-
mally crossed diagrams can be obtained from the ladder
sum represented in Fig. 3 since maximally crossed dia-
grams are related to ladder diagrams after cutting the cen-
ter propagator line and pivoting.

The sum of all ladder diagrams with incoming momenta
q1,q2 and momentum transfer l as labeled in Fig. 3, de-
noted by V �q1, q2; l�, satisfies the integral equation
V �q1,q2; l� � V0�q1, q2; l� 1
Z dl0

p
�V0�q1 1 l0, q2 2 l0; l 2 l0�PB�q1 1 l0, v�PB�q2 2 l0, v�V�q1, q2; l0�	 , (14)
where V0 is the original interaction

V0�q1, q2; l� �
e2�1�2� jlj2

p
sin

µ
q1 ^ l

2

∂
sin

µ
q2 ^ l

2

∂
.

(15)

Note that V has an implicit v dependence. The content of
(14), discussed below, is that V has a diffusion pole when
q2 � 2q1:

V �q, q0; q0 2 q� ~
1

iv 1 D1�q 1 q0�2 . (16)

The physics of (16) is similar to that of the weak-
localization (WL) logarithmic singularity in two di-
mensions [16], but with two major differences: the
disorder-generated effective interaction involves four
bosonic density operators and hence eight rather than
four fermionic operators, and time-reversal symmetry is
broken by the magnetic field. The singularity results when
the integral equation (14) becomes nearly V � V0 1 V ,

=

+

FIG. 1. Diagrammatic representation of the large-N propaga-
tor equation (13). The double line is the noncrossing propagator.
i.e., when the integral operator on the right-hand side has
an eigenvalue going to 1. Consider a rung of a long lad-
der diagram. The intermediate propagator momenta on the
nth rung from an end of the ladder have magnitude pro-
portional to

p
n (momenta walk randomly in the plane) so

most momenta in a long ladder can be assumed large. Each
rung adds two propagators PB�`, v� � 2i 1 v�2, and
the interaction averages to 21 1

1
8 �q 1 q0�2. This gives

the estimate D1 �
1
8 in (16).

The above derivation assumes white-noise disorder in
the Girvian, although physical white-noise disorder cor-
responds to disorder of correlation length 
� in G [9].

MC

MC

+ + . . .

=

= + MC1/N

(a)

(b)

FIG. 2. Diagrams contributing to 1�N propagator correction.
The solid interaction line in (b) indicates one or more noncross-
ing interaction lines. Each diagram has one fewer free index
choice than the noncrossing diagrams of the same order.
046801-3



VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001
q
2

q
2

q
2

q
2

q
2

- l

q
2

- l

q
1

q
1

q
1

q
1

+ l

q
1

q
1

+ l q
1

+ l

q
2

- l

- l

l l

l

+ l

/

/

l-l
/

=

+

/

FIG. 3. Schematic representation of the sum of ladder dia-
grams. The solid block is defined as the sum of one or more
rungs with the specified total momentum transfer.

Another assumption is that the lack of an upper momen-
tum cutoff in the Liouvillian approach does not soften the
singularity (16) to a logarithm. The singularity is found
numerically to persist without these assumptions, suggest-
ing that the high-momentum degrees of freedom do not
change the scaling behavior qualitatively, as in [17]. We
call the limit with point disorder and finite cutoff the WL
limit as these assumptions are standard in that context.

The contribution of all maximally crossed diagrams to
the propagator is

PMC�q, v�
PB�q, v�2 �

Z
dq0 PB�q0, v� �V 2 V0�

3 �q, q0; q0 2 q� . (17)

Here the subtraction of V0 removes the first ladder diagram,
which has no crossings and is already in PB. Integrating
q0 in (16) leads to a logv contribution in PMC.

The sum of maximally crossed diagrams (17) already
shows nondiffusive scaling (an anomalous prefactor in v),
which is modified quantitatively but not qualitatively by
adding rainbows over the MC diagrams. There is a loga-
rithmic divergence in the sum of maximally crossed dia-
grams, leading to a diffusion constant

D�v� � D0 1
a logv

N
1 O�N22�

� D0 exp

µ
a logv

ND0

∂
� D0va�ND0 (18)

using the standard device of reexponentiation in large-N
theories to estimate critical exponents. Hence

1
2n

�
a

ND0
1 O�N22� . (19)

The coefficient a is found from the numerical solution
of (14) and (17). Figure 4 shows sample data from this
calculation. Numerically D0 � 0.682, a � 0.18 6 0.02,
and therefore n � �1.89 6 0.1�N . In the WL limit the ad-
dition of overloops (Fig. 2b) is found analytically to reduce
a and increase n by a factor of 2. Preliminary numerical
results [13] are that the correction is in the same direction
046801-4
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FIG. 4. Numerical results for maximally crossed contribu-
tion to diffusion constant D�v�, on a semilog scale. Here
S � v 2 1�P.

for the full model. Although this paper has focused on the
LLL plateau transition, the large-N Liouvillian approach
may also be useful for other noninteracting quantum Hall
transitions with a discrete spectrum of extended states.
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