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Surface Patterns of Laterally Extended Thin Liquid Films in Three Dimensions
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We examine the fully nonlinear behavior of a thin liquid film in three spatial dimension for a large
lateral extension. A partial differential equation is used for the spatiotemporal evolution of the height
of the film. To take intermolecular forces in the liquid into account, we concentrate on a recently
formulated model of Pismen and Pomeau, who derived an expression for the disjoining pressure only
from the wetting properties of the fluid. Finally, the motion of a falling film on an inclined plane is
studied within this model.
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The spatiotemporal behavior of thin liquid films on a
solid support and with free surface has widespread tech-
nological applications like coating or wetting processes.
If the surface of the flat film is unstable to spatial dis-
turbances, pattern formation sets in and drops, holes and
eventually film rupture may occur. The spontaneous for-
mation of surface patterns on thin liquid films is known as
“spinodal dewetting.” The description used here goes back
to the work of Vrij [1] and is based on a free (interface) en-
ergy which includes surface tension phenomenologically.
In contrast to the stabilizing effect of the surface tension,
destabilizing mechanisms may originate from intermolecu-
lar forces in the film which give rise to an additional pres-
sure term in the Navier-Stokes equations, the disjoining
pressure [2]. Using the diffusive interface description [3],
Pismen and Pomeau [4] recently derived an expression for
the disjoining pressure with only one free parameter de-
termined by the wetting properties of the fluid. They con-
sidered a three phase contact line (solid-liquid-gas) and
computed the interaction force between the liquid-gas in-
terface and the solid support. It turns out that this force
can be repelling (medium and very short distances) or at-
tracting (short and long distances), allowing for two ho-
mogeneous and stationary solutions for the film thickness.
The same functional dependence of the disjoining pressure
on the film height was examined in the work of Sharma
et al. and referred to as type IV systems [5–8], derived
there from Van der Waals forces in the liquid. In their 3D-
numerical investigations, Sharma et al. found similar re-
sults to our noninclined case; in particular, they obtained
drops, holes, and labyrinths, depending on the parameters
of the interaction force. The similarity to our findings sup-
ports their conjecture that the functional dependence of
the disjoining pressure on the film height is crucial for
pattern evolution and morphology. In contrast to previous
work we shall use the disjoining pressure of Pismen and
Pomeau and show numerically that for certain parameter
ranges where the flat film is unstable, holes and drops are
formed in large lateral geometries. Finally, we present nu-
merical solutions for inclined films, where falling drops
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or fronts can be studied, in agreement with recent experi-
ments [9].

Thin film equation.—As already mentioned in [7], three
dimensional examination of the basic equations seems
necessary since in two dimensions the behavior is qualita-
tively different; e.g., it is hard to determine between holes
and drops and the formation of circular structures cannot
be demonstrated. We consider pattern formation in thin
films obeying the lubrication approximation [2]. Then the
height h of the film can be expressed as a unique function
of the horizontal coordinates x � �x, y� and time. For
the evolution of h a �2 1 1� dimensional conservation
equation of the form

≠th�x, t� � 2=S�h� (1)

applies, where the current density S�h� can be expressed
by

S�h� � 2Q�h�=f�h� (2)

with the generalized force =f�h� and the mobility Q�h�.
Here = denotes the horizontal gradient �≠x , ≠y�. The force
is given by the gradient of the chemical potential f which
itself may be derived from a free energy F by f�h� �
dF�dh. If one wishes to include the surface tension
s at the film surface, the Ginzburg-Landau free energy
functional

F�h� �
Z

d2x
Ω

1
2

s�=h�2 1 f�h�
æ

(3)

can be used. The notion “disjoining pressure” is com-
monly used for the negative derivative P � 2df�dh. Be-
cause of dtF�h� # 0, asymptotically time stable spatial
patterns can be found by dF�h� � 0 with the constraintR

d2x h � const, which means that the volume has to be
conserved. (This is, of course, true only for periodic or
Neumann lateral boundary conditions for S. Here we as-
sume periodic ones.) Inserting (3) into (2) and (2) into (1)
we may write (1) in a more convenient form, where the
possible occurrence of spatially inhomogeneous instabili-
ties can be seen immediately. It reads

≠th � D�h�Dh 2 Q�h�D2h 1 �dhD�h�� �=h�2

2 �dhQ�h�� �=h ? =Dh� , (4)
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where dh stands for derivatives with respect to h and D,D2

denote the horizontal Laplace and biharmonic operators,
respectively. Here the “diffusion constant” D turns out to
be

D�h� � Q�h�d2
hhf�h� (5)

and a function of h itself. We note that using the h4 poten-
tial [10] f�h� � 2h2�2 1 h4�4, and a constant mobility
Q � 1, Eq. (4) turns into the well-known Cahn-Hilliard
equation [11]. Since

R
d2x h � h0 is a conserved quantity

under the evolution described by (1) or equivalently by (4),
we may use h0 (the mean value of the height or the height
of the flat film) as a control parameter in the following.
From linear stability analysis it is clear that the homoge-
neous state h � h0 can get unstable via spatially periodic
solutions if D�h0� , 0. The lines D�h� � 0 are named
spinodals. Between the spinodals, instability sets in with
the fastest growing wave vector jkcj �

p
2D�h0��2Q�h0�.

It is named type IIs instability in the classification given by
Cross and Hohenberg [12]. The same kind of linear insta-
bility is found in the Kuramoto-Sivashinsky equation [13].

The disjoining pressure of Pismen and Pomeau.— In a
very recent work [4], the disjoining pressure

P � 2dhf�h� � 2
2
a

e2h��

µ
1 2

1
a

e2h��

∂
2 rgh

(6)

was suggested. Here r is the density of the film and
g the gravitational acceleration. In contrast to previous
work, where the disjoining pressure is derived from inter-
molecular forces, only one free parameter, a, enters here
(� can be scaled into h). It describes the wetting properties
of the film, for a . 0 the density of the fluid decreases in
a small boundary layer by approaching the solid surface.
By derivation, a has to be a small quantity, and we fix it
in the following at a � 0.1. Figure 1 shows the disjoin-
ing pressure for a certain g. The three heights that lay on

FIG. 1. The disjoining pressure of Pismen and Pomeau [4] for
a � 0.1, G � 0.2. The dashed line is obtained by an equal areas
construction (cf. text).
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the Maxwell line (dashed) may coexist, but the one in the
middle is unstable to infinite disturbances. Below (above)
a certain hmin�hmax� (the binodals) only one height is pos-
sible and the flat film is absolutely stable. Between the
two extrema h1, h2 (the spinodals) the flat film is unstable
to arbitrarily small disturbances. In regions between hmin
and h1 as well as h2 and hmax the film is bistable, and drops
or holes can be created only by a finite disturbance (nucle-
ation regime) [14]. Therefore for certain mean heights, the
film has two competing preferred thicknesses, one below
and the other above the mean height, which can be realized
locally. This can be understood in terms of the phase field
theory. Assuming the fluid density r�z� as phase variable
(r � 1 means liquid, r � 0 gas state), two steady stable
kink solutions r1�z�, r2�z� of the phase field equation (for
details see [4])

�r � ≠2
zzr 2 r�1 2 2r� �1 2 r� 1 a2�m 2 Gz� (7)

with the boundary condition r�0� � 1 2 a at the solid
support and r�`� � 0 exist (Fig. 2), and G is the nondi-
mensional gravitational constant. The kink marks the lo-
cation of the (diffusive) interface. The two coexisting
heights for a certain chemical potential m are found as
hmin,max �

R`

0 r1,2 dz. After appropriate scaling to nondi-
mensional variables, the mobility, derived from a Poseuille
flow, simply reads Q�h� � h3. In this scaling expres-
sion (5) turns into

D�h� � h3
µ
2

2
a

e2h 1
4
a2 e22h 1 G

∂
. (8)

Figure 3 shows the spinodals as well as the binodals for
different G.

Numerical solutions.—Pattern formation on thin films
was extensively studied in experiments over the last
decades, for a review see [2] and [15,16]. To present
numerical solutions, we solved (4) with (8) using a
pseudospectral code which was developed earlier for the
solution of 2D models describing convection patterns
[17]. The code is implemented on an alpha workstation
and allows for a spatial resolution up to 256 3 256 mesh
points. Because of the semi-implicit time integration,
the time step could be fixed at values of order one.
This allows computations for rather large domains in a
reasonable time (some hours). Details of the numerical

FIG. 2. Two numerically obtained coexisting kink solutions of
the phase field equation (7), corresponding to two different film
thicknesses with the same chemical potential.
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FIG. 3. Binodals (dashed) and spinodals (solid) as a function
of G. The dotted line denotes hc , the height which separates
holes from drops (cf. text).

scheme will be presented elsewhere. For all runs we
use fixed parameters G � 0.2 and a � 0.1, and various
values of the mean height h0.

1. Spinodal decomposition, drops: Fig. 4, top row,
shows a time series with h0 � 3.4 in the unstable region.
On the time scale of the linear growth rate found from (4),
t � 4Q�h0��D2�h0� � 200, small drops with wave vec-
tor modulus kc � 0.1 are formed, as expected for type IIs

FIG. 4. Numerical results of (4) for different mean heights
h0. The film height is proportional to the brightness. Top
row: formation of drops, side length of the layer L � 480,
128 3 128 mesh points. In the initial phase, small cells are
formed. During the evolution, larger drops grow at the expense
of the smaller ones which vanish. Drops are usually always
circular. The squarelike shape in the last frame is probably due to
self-interaction, which is possible for periodic lateral boundary
conditions. Middle row: formation of holes. The same dynamics
as for drops can be seen in earlier stages. However, holes are
not always circular but like to form long and narrow structures.
L � 480, 128 3 128 points. Bottom row: Mazes are formed
in an earlier stage for intermediate values of h0 near hc. Finally,
drops survive. L � 650, 256 3 256 points.
046101-3
instability. In the long time limit, smaller drops vanish or
fuse to bigger ones, as a consequence of minimization of
(3). If one waits long enough and the drops are not sepa-
rated too much in space, only one big drop will eventually
survive. The amplitude of the drops is roughly that of the
upper binodal, where the height of the rest of the film co-
incides with the lower ones.

2. Spinodal decomposition, holes: The situation is
opposite for larger h0 � 4.1 (Fig. 4, middle row). At the
beginning, holes are formed with about the same kc and on
about the same time scale. In the long time limit one big
hole will survive. During the evolution, the form of the
holes is often not completely circular like that of drops.
Instead the tendency to long, narrow holes can be clearly
seen.

3. Spinodal decomposition, labyrinths: A mazelike
structure in the short time range is formed for intermediate
h0 � 3.8 (Fig. 4, bottom row), giving way to drops for
longer times.

The critical height hc where drops change to holes in the
long time limit can be found by the Maxwell construction
done in Fig. 1. It coincides with the location of the local
maximum of the free energy separating the two minima
and corresponds to the middle intersection of the Maxwell
line with the disjoining pressure. Its value depends on G
and is plotted in Fig. 3 as a dotted line.

4. The falling film, separation of drops. Next we incline
the film layer in the y direction by a small angle a, giving

FIG. 5. The layer is now inclined in the y direction, and the
film falls downwards. Larger drops travel faster. For large
enough inclination angle, secondary drops separate from the
primary ones. We fixed h0 � 3.2 in the bistable region to avoid
instability of the flat domains. L � 950, 256 3 256 points.
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FIG. 6. Falling film, where the initial condition is a wall. The
leading front becomes unstable by a periodic instability and
fingering can be observed. L � 950, 256 3 256 points.

an additional force term [2]. In nondimensional form, the
current (2) has to be extended:

S�h� � 2Q�h� �=f�h� 1 aGey� , (9)

where ey is the unit vector in the y direction. Starting
the simulation with only a few drops, cusps are formed at
their trailing ends for not too large a. For larger values, the
cusps get sharper and small drops separate (Fig. 5). The
velocity increases with the size of the drops. On smaller
drops the cusps are generated faster and the separation of
secondary drops is seen earlier.

5. The falling film, fronts, and fingers: Finally, we
study the instability of a falling front. Let L be the length
of the layer [in adimensional units of (8)]. As initial con-
dition we take a wall of area size d 3 L, homogeneous
in the x direction. The height of the wall is that of the
upper binodal hmax, whereas the rest of the film has the
height hmin. The length d is chosen so that the mean height
h0 � �d�L�hmax 1 �1 2 d�L�hmin � 3.4, in the unstable
region. For a � 0.2 the leading front of the wall gets
unstable by a periodic instability along the wall (Fig. 6).
From this perturbation, fingers grow having more or less
equal distances. The wave vector for the fingers for our
parameters is k � 0.05 which is about half of the critical
wave vector. We note that we also observed an unstable
trailing edge of the wall, but for smaller values of a � 0.1.
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Qualitatively the same pictures are obtained in experiments
with falling films of silicone oil or glycerine [9,18], and nu-
merically in a very recent work with a different disjoining
pressure [19].

In conclusion, we found that our numerical simulations
using the disjoining pressure of [4] can explain the for-
mation of three dimensional drops and holes near a three
phase contact line. We determined the critical height, be-
low (above) which the flat film is unstable and forms drops
(holes). Finally, for inclined films we predict the deforma-
tion of circular drops followed by separation of secondary
smaller drops at the trailing end as well as finger formation
along initially straight fronts.
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