
VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001

045501-1
Phase-Field Model of Mode III Dynamic Fracture
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We introduce a phenomenological continuum model for the mode III dynamic fracture that is based on
the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar
field, which distinguishes between “broken” and “unbroken” states of the system, to the displacement
field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant
short-scale description of breaking. We report two-dimensional simulations that yield steady-state crack
motion in a strip geometry above the Griffith threshold.

DOI: 10.1103/PhysRevLett.87.045501 PACS numbers: 62.20.Mk, 46.50.+a
The nonequilibrium physics of dynamic fracture contin-
ues to be a challenging topic of great interest [1]. Recent
efforts have been spurred by experimental findings regard-
ing the breakdown of straight crack propagation (along
with its associated smooth fracture surface) as the crack
speed exceeds a threshold value. This instability has been
seen in a variety of materials, both crystalline [2] and
amorphous [3,4], and it has been reproduced in molecu-
lar dynamics simulations [5] as well as with finite element
schemes [6].

For any material undergoing brittle fracture, linear con-
tinuum elasticity provides only an accurate description of
the displacements in regions which are not too close to the
crack tip. The classic approach to this problem [1] has
been to solve linear elastic equations, with boundary con-
ditions providing the driving stresses, right up to this tip.
This approach relies upon the assumption that the “pro-
cess zone,” inside of which the linear continuum equations
break down, is microscopic in size. The solutions have
stress fields which become singular at the assumed tips,
representing a finite flow of energy into the infinitesimally
sized process zone. The velocity of the crack is then phe-
nomenologically assumed to be given by some function of
this energy flow rate.

This approach has two main limitations from a physics
perspective. First, it does not provide insight into how the
crack velocity is actually determined, e.g., how it depends
on short-scale dissipation. Second, and more importantly,
it fails to predict instabilities of the tip dynamics. Thus,
just as is the case in the well-studied problem of dendritic
solidification [7], one must supplement the macroscopic
transport physics with a consistent, regularizing micro-
scopic theory on the tip scale in order to create a sensible
theoretical framework.

One method for accomplishing this task involves placing
the system on a lattice and allowing for the elastic forces
to rapidly diminish at large atomic separation. Analytical
[8–11] and numerical [10,12] studies of such models have
shown that the details of the lattice structure are critical
for the tip dynamics. This is not surprising since in gen-
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eral the process zone scale is just the lattice spacing. Thus,
these models are useful but cannot even qualitatively de-
scribe experiments in amorphous systems. What appears
to be a more sensible approach for this class of systems is
to construct a regularized continuum model that maintains
rotational symmetry even inside the process zone. Con-
structing such a theory is the aim of this paper [13].

As a first step, we focus here on the simpler situation of
mode III fracture for which the standard displacement field
�u (of mass points measured from their original position)
can be taken to be in a fixed direction (out of the plane)
and hence can be represented by a scalar field u. Standard
linear elasticity assigns the energy

E �
Z

d �x
1
2

m �e 2 (1)

with the strain �e � �=u and an elastic constant m. Allow-
ing a material to fracture means that, at large enough �e 2,
the energy becomes strain independent, thereby eliminat-
ing the force. In an ideally brittle material, for example,
this transition occurs immediately at some critical mag-
nitude of the strain, ec. Our basic idea involves repre-
senting the local state of the system, either unbroken with
j �ej , ec or broken with j �ej . ec, via a second “phase”
field f��x, t�. This field can be made to track the correct
state if it obeys a standard two-minimum Ginzburg-Landau
equation with the relative energy of the two wells depen-
dent on e2 2 e2

c . Specifically, we choose

t≠tf��x, t� � Df=2f 2 V 0
DW �f� 2

m

2 g0�f� � �e2 2 e2
c � ,

(2)

where VDW �f� �
1
4 f2�1 2 f�2 and g is a function spec-

ified later that has the properties g�0� � 0, g�1� � 1, and
g0�0� � g0�1� � 0. With these choices, the two minima
are always at f � 0 and f � 1, with the absolute mini-
mum shifting from 1 to 0 as �e2 passes e2

c .
To close the system, we need to specify how f affects

the elasticity equation. Note that the above equation fol-
lows from the relaxational dynamics, t≠tf � 2dE�df,
where the energy E is now given by
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∏

.

(3)

If we now interpret this E as the full potential energy in-
cluding the elastic contribution, we see that the aforemen-
tioned properties of g�f� will in fact eliminate the elastic
force for large strain without having any effect at small
strain where f � 1 and thus g � 1. Consequently, our
second equation is derived by varying this energy with re-
spect to displacement, which yields

r
≠2u

≠t2 1 b
≠u

≠t
� m �= ?

∑
g�f� �=

µ
1 1 h

≠

≠
t

∂
u

∏
, (4)

where we have allowed for both a Stokes drag term with
coefficient b and a Kelvin viscosity h. The mass density r

does not depend on f in accordance with our interpretation
of the phase field as a measure of the fraction of broken
bonds. This completes our model specification.

Let us place this paper in some perspective. Our ap-
proach is similar in philosophy to, but very different in
detail from, the work of Aranson and co-workers [16] who
also derive a continuum two-field model for fracture. Most
crucially, fracture in their model fails to fully relieve the
bulk strain and thus has certain nonphysical features such
as a logarithmic dependence of the crack opening on the
system size, which as we shall see below is absent in our
model. Within the traditional fracture community, sev-
eral researchers [17] have studied the effects of “soften-
ing” the elastic energy at large strain and compensating for
the resultant instability in the equations by adding higher
derivative terms. This approach, however, turns out to be
difficult to extend in order to construct a continuum model,
where the fracture energy is independent of the system size
and, at the same time, the strain is fully relieved in the
bulk after passage of the crack. Moreover, it leads to a
single fourth-order elasticity equation that is hard to treat
numerically. Finally, it is worth recalling that the original
idea [18] of representing different phases of a system via
a field coupled to the macroscopic dynamics, and there-
after using derivative terms in the phase field to regular-
ize the problem, arose in the context of nonequilibrium
crystal growth, where it has become the method of choice
[19,20] for highly accurate computations of solidification
microstructures.

To understand how our model accounts for fracture, we
start with the (one-dimensional) snap-back of a stretched
elastic band of size 2L after it breaks in the middle. Let us
first consider the final time-independent cracked state; note
that this is equivalently the asymptotic state for a 2D crack
once the tip has passed. This state is determined by solving
the above equations with all time derivatives set to zero,
with the boundary conditions u�6L� � 6D, f�6L� � 1.
Note that 2D is the total integrated strain that is con-
served by the dynamics. Moreover, both e� y� and f� y�
are symmetrical about y � 0; thus we only need to find
a solution in the interval 0 # y # L. The elasticity equa-
tion, Eq. (4), requires e� y� � ≠yu � e0�g�f�y��, where
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the boundary condition f�L� � 1 requires that e0 � e�L�
since g�1� � 1. Substituting this form into Eq. (2) yields

0 � Dff00 2 V 0
DW�f� 2

m

2
g0�f�

µ
e

2
0

g2�f�
2 e2

c

∂
.

(5)
From now on, we rescale lengths to make Df � 1. Equa-
tion (5) can be thought of as the equation of motion of a
ball rolling in an effective potential

Veff�f� � 2VDW 1
m

2

µ
g�f�e2

c 1
e

2
0

g�f�

∂
. (6)

A schematic picture of this potential is shown in Fig. 1.
The solution of interest corresponds to rolling in a “time”
L from the top of the hill at f � 1 to the turning point
f� located near f � 0; this turning point exists because
e

2
0�g�f� becomes large and positive for small f.
The asymptotic steady-state crack is thus given by

1
p

2

Z f� y�

f�

df̃q
E0 2 Veff�f̃�

� y . (7)

The two unknown constants e0 and E0 are fixed by the
requirements that the above equation yields f � 1 at y �
L and by the overall integrated strain constraint

e0p
2

Z 1

f�

df̃

g�f̃�
q

E0 2 Veff�f̃�
� D . (8)

For this solution to be physically acceptable, almost all of
the displacement must occur in the crack, thereby relieving
the strain in the bulk, which imposes a constraint on the
form of the function g. To see why, consider the large-L
limit (where, with Df � 1, our length unit is the process
zone scale) and note that D must be taken to increase
with L; for constant strain D � L, whereas, for the full
2D problem, the standard Griffith criterion for fracture
necessitates the scaling D �

p
L. There is a contribution

to the integral on the left-hand side of Eq. (8) that arises
from f of order f�, which is close to zero. If we choose g
to vanish near f � 0 as a power law g � f21a, it is clear

0 0.2 0.4 0.6 0.8 1
φ

−0.05

0.05

0.15

0.25

V
E

F
F

ε0=0.01
ε0=0.001
ε0=0.0001

FIG. 1. Plots of the effective potential for 1D static crack pro-
files (m � 1 and ec � 1�2).
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from the form of the effective potential that f� � e
2��21a�
0 .

Given this, the local contribution to the integral scales like
e

2a��21a�
0 . This contribution will match the right-hand

side of Eq. (8) with the choice
e0 � D2�21a��a. (9)

Hence, as long as a is positive, e0 will go to zero at large L
fast enough such that the local contribution, i.e., that of the
crack, to the overall displacement is dominant compared
to the bulk contribution which scales as e0L. We note
that the least residual stress occurs in the limit a ! 01,
which gives rise to an exponential decrease as a function of
system size. Finally, the fracture energy g remains finite
as L gets large, as is also required for a sensible theory.
In this limit, e0 ! 0 and E0 ! me2

c�2, and it is easy to
derive the expression

g �
p

2
Z 1

0
df̃

q
me2

c�2 2 Veff�f̃;e0 � 0� . (10)

We now turn to the 1D time-dependent problem. We
choose g � 4f3 2 3f4, so that a � 1 and e0 should
scale as D23; we also pick ec � 1�2, m � 1. Figure 2
shows the time development of the strain, for a com-
pletely overdamped system, r � 0, b � 1, h � 0. We
see that the system proceeds to fully cracked (i.e., con-
centrate the strain in a very narrow region) and thereby
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FIG. 2. Results of 1D crack computations. (a) The strain field
at intervals of 100 time units starting at t � 20; the solid line is
the expected infinite-L continuum result at t � 120. (b) Asymp-
totic profile of the phase field. L � 40, D�L � 0.2.
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relieves the bulk strain. Outside of the crack, the solu-
tion agrees quite well with the easily derived continuum
result e� y� �

D

L erf� y
p

4t
�, valid as long as we can neglect

the boundary condition at y � L. We note in passing that
the outer problem tracks the expected behavior before the
strain inside the crack reaches its asymptotic state. The
latter requires a collapse of the strain field to a scale much
smaller than that of the dip in f, but this is uncoupled to
the rest of the problem. For a typical underdamped case
(r � 1, b � 0, h � 0.2) the relaxation to steady state in-
volves, as it must, damped oscillations (data not shown).

The real test of any fracture model comes in two (or
higher) dimensions. Now, the crack tip must advance
by providing enough stress to strain new material be-
yond a critical extension. We have carried out a pre-
liminary simulation study of our model in a 2D strip
geometry (with the edges of the strip at y � 6L� using
a standard Crank-Nicholson alternating-direction-implicit
scheme [21]. We used the initial condition corresponding
to a strained solid with f�x,y� � 1 and u�x, y� � Dy�L,
which must produce a crack propagating along the x-
direction above the standard Griffith threshold, D . Dc,
where here Dc �

p
2gL and g � 0.3808 . . . is given by

Eq. (10) for our model parameters (m � 1, ec � 1�2). A
typical time sequence for a stably propagating crack is pre-
sented in Fig. 3. We checked that our results are reason-
ably independent of the discretization scale dx, such that
we are truly seeing the results of the continuum regulariza-
tion of the tip-scale dynamics.

In Fig. 4, we present the steady-state crack velocity as a
function of the driving. The crack propagates above a criti-
cal value of the drive that is within a few percent of the ana-
lytically predicted value Dc �

p
2gL for the large-L limit

even though L is not that large (L � 10) in the simulations.
It is important to recognize that V�D� cannot be obtained
from the usual continuum theory without additional
assumptions; here it follows directly from the fact that
we have a consistent theory at both the macroscopic and
microscopic scales. One can obtain similar results from
lattice models of fracture [9,10,22], at the price of
introducing lattice-scale instabilities [12,23]. These
instabilities are connected to spatial period doubling,

(a) (b) (c) (d)

FIG. 3. 2D simulation snapshots; pictured here is f in grey
scale (0 � black, 1 � white) over one-half the computational
domain of size 20 3 20; here r � 1, b � 0, h � 0.2, D �
2.81, time step � 0.02, and grid spacing � 0.05.
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FIG. 4. Velocity vs driving from 2D simulations.

when the times for breaking alternating diagonal bonds
in a hexagonal lattice become unequal. Thus, they have
no direct relevance to amorphous systems without any
underlying crystallinity. So far, here, we have found that
steady cracking persists to rather high displacements.
However, additional computations remain needed to
investigate if linear or finite amplitude instabilities exist
for systems with a considerably larger transverse size,
smaller damping, and for extensions of our model to the
mode I case typically studied experimentally.

In terms of physics, our approach leads to the introduc-
tion of a new time scale, t, connected to the relaxational
rate of the phase field. At any nonzero t, this relaxation is
a possible source of tip-scale dissipation and hence it can
affect the crack propagation. Decreasing this parameter
in the simulations indeed increases the velocity, consistent
with convergence to a finite limit as t ! 0 with O�t� cor-
rections. This indicates that the velocity is predominantly
limited here by the rate at which the strain is drained from
the bulk into the crack.

An important numerical issue for future consideration
concerns the sharpness of the strain profile. To fully re-
solve the spatial scales in the 2D crack is a daunting task
which probably cannot be accomplished by sticking with
a fixed computational grid. A related issue concerns the
long time scale necessary for full strain collapse inside the
crack. It may be possible to modify the equation of motion
to speed up this relaxation; we have already argued that the
details of this collapse should not matter. Finally, to make
contact with expected results from the fracture community
(such as the role of the stress intensity factor) will require
much larger systems and much more attention to details of
the initial conditions.
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