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Stability of Periodically Focused Intense Particle Beams
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A stability analysis of periodically focused intense particle beams based on the beam envelope equation
is performed. We show that (i) the scenario, as the focusing field increases, is not the existence of a
single threshold above which stable matched (equilibrium) solutions are absent, as generally believed,
but the existence of successive regions of stability interrupted by gaps of instability; (ii) the beam can
be focused to tighter radii using new stable matched solutions found for focusing field strengths greater
than the previous threshold. Self-consistent simulations validate the findings.
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Confinement of low-emittance, high-current beams in
periodically focusing systems [1–5] is crucial for the de-
velopment of several advanced particle accelerator appli-
cations, from heavy-ion fusion to spallation neutron source
[6], as well as applications in basic science. A key aspect
of periodically focused beams is their stability properties.
Previous studies based on kinetic theory [2] and on the
analysis of the beam envelope [7–9] revealed that within
a relatively limited range of variation of the focusing field
strength, only one equilibrium solution with the beam ra-
dius displaying the same periodicity of the external con-
fining field is present; we call this the matched solution.
The matched solution was shown to present several tran-
sient instabilities as the focusing field strength is varied
[2], and these instabilities were found to be closely related
to nonlinear resonances involving the oscillatory frequen-
cies of the focusing field and of the electrostatic perturba-
tions propagating with the beam [9]. In particular, it was
shown that above a certain threshold of the focusing field
strength the matched solution undergoes a major bifurca-
tion and loses stability [2,9], which creates severe limita-
tions to the practical use of periodic focusing as a confining
tool. In this paper we perform a detailed stability analy-
sis of periodically focused intense particle beams, based
on the beam envelope equation. In particular, we con-
sider a high-current beam in a periodic solenoidal focusing
field. Poincaré mappings allied to the Newton-Raphson
method [10] are employed to precisely locate and deter-
mine the stability of matched solutions in the appropriate
phase space. It is shown that these solutions undergo a
series of direct and inverse bifurcations as the parameters
of the system are varied. Particularly, it is shown that al-
though the matched solution analyzed in previous works
becomes unstable and eventually vanishes as the focusing
field strength increases, stability is recovered for yet larger
fields because new stable matched solutions emerge in the
phase space. The general scenario as one increases the fo-
cusing field is thus not the existence of a single threshold
above which confinement is impossible, but the existence
of regions of stability interrupted by gaps where either the
matched solution becomes unstable or is absent. Trans-
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verse sizes are also analyzed and we learn how to focus
the beam to tighter radii using the new stable matched so-
lutions found for focusing strengths greater than the previ-
ously established threshold.

In the paraxial approximation the dimensionless enve-
lope equation for a beam in a periodic solenoidal focusing
magnetic field reads

d2rb

ds2 1 kz�s�rb 2
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s � z�S � bbct�S is the coordinate along the beam axis,
rb�s� � rb,dimensional��Se�1�2 is the beam radius, K �
2q2NbS�eg
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bm2c4 is the focusing

strength parameter, where Bz�s� is the magnetic field on
the beam axis, S is the periodicity length of the focusing
field, bbc is the average axial velocity, c is the speed
of light in vacuo, e is the unnormalized emittance of
the beam, Nb is the number of particles per unit axial
length, and q, m, and gb � �1 2 b

2
b�21�2 are, respec-

tively, the charge, mass, and relativistic factor of beam
particles. For the sake of simplicity we consider kz�s�
in the form kz�s� � s

2
0 �1 1 d cos�2ps��, with s0 �

�
R1

0 kz�s� ds�1�2 representing the vacuum phase advance
in the smooth-beam approximation and with 0 # d # 1
as the amplitude of the focusing field oscillations. The
results to be presented here are independent of the specific
form of kz�s�. We first notice that if the magnetic field
is uniform with d � 0 and kz�s� � s

2
0 � const, the

envelope equation represents an autonomous 1 degree-
of-freedom Hamiltonian system which is known to
be completely integrable yielding regular trajectories
[10]. In this case there is one equilibrium radius
rb0 � �2K 1 2�K2 1 4s

2
0 �1�2�1�2�2s0. rb0 is dy-

namically stable with the wave number of small linear
oscillations of wavelength l around the equilibrium
yielded by [9]

k0 � 2p�l � �4s2
0 1 K2 2 K�4s2

0 1 K2�1�2�1�2. (2)

The wave number kmax of oscillations far away from equi-
librium can also be calculated in uniform fields if for large
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VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001
rb’s one discards 1�rb and 1�r3
b in Eq. (1) but takes into

account the effect of these “centrifugal” forces at rb � 0;
this is essentially a harmonic well blocked at rb � 0 from
which one has kmax � 2s0. Note that kmax . k0; this fact,
not properly noticed earlier, has relevant consequences to
be discussed shortly. When d fi 0, we resort to nonlin-
ear dynamics techniques and evaluate the stability index
a of periodic orbits as represented on a Poincaré plot of
the phase space where we record the pair �rb , drb�ds� at
integer values of s [10]. We define a � cos�kfix�, where
kfix is the wave number of small linear oscillations around
the periodic trajectory (fixed point in the Poincaré plot)
and is calculated numerically using a Newton-Raphson
method. If jaj , 1 for kfix real, the orbit is stable; if
a reaches the upper boundary a � 11 the orbit under-
goes an inverse tangent bifurcation with a previous un-
stable fixed point, and if the lower boundary a � 21 is
crossed, the orbit undergoes a period doubling bifurcation
losing stability. When d � 0, one can simply evaluate a

for the central fixed point in the form a � cos�k0�, k0 from
Eq. (2). In this case, the argument of the cosine function
is real, a is always bounded by 11 and 21 and no bifur-
cations occur in the phase space. On the other hand, when
the perturbation is turned on with d fi 0 various bifurca-
tions mark their presence on the phase space. These bifur-
cations are analyzed in Fig. 1, where we plot the stability
index a as a function of the vacuum phase advance s0
(in degrees) for a uniform magnetic field d � 0.0 (dashed
line), a perturbative case with d � 2.0 3 1023 ø 1 (thin
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FIG. 1. Stability diagram a 3 s0 for K � 3.0 and d � 0.0
(dashed line), d � 2.0 3 1023 (thin solid line), and d � 1.0
(thick solid line). In panels (b) and (c) we zoom in panel (a)
close to bifurcations.
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solid line), and a nonperturbative case with d � 1.0 (thick
solid line). Note that the d � 0.0 curve is generally not
visible because the d � 2.0 3 1023 curve overshadows
it for most of the values of s0; the only regions where
these two curves can be distinguished are close to the bi-
furcations, as discussed next. First of all we observe that
when d fi 0, the first valley of the curve a vs s0 drops
to a position slightly below the lower boundary a � 21.
This is shown in detail in Fig. 1(b), where we see that
the d � 1.0 matched solution clearly crosses the a � 21
line. This means that at this point the matched solution
undergoes a period doubling and becomes unstable, as no-
ticed in a series of previous works in connection to the
strong s0 � 90± instability; search for stable solutions tra-
ditionally does not go beyond this point. However, if one
continues to increase s0, we see that the matched solu-
tion crosses back a � 21, recovering stability. The gap
of instability for the d � 1.0 matched solution can be es-
timated from Fig. 1(b) as Ds0 � 8±. Although not clear
from Fig 1(a), the d � 2.0 3 1023 matched solution also
undergoes the same sequence of bifurcations, the differ-
ence being the size of the instability gap which is shorter:
Ds0 � 0.016±. In fact, any d fi 0 would induce the se-
quence of bifurcations, with smaller d’s, generating shorter
gaps. The sequence (before, during, and after period dou-
bling) is displayed as Poincaré plots in panels (a)–(c) of
Fig. 2, for d � 1.0.

Perturbative cases, d ø 1.—Remaining bifurcations
in phase space are now initially examined under a per-
turbative regime d � 2.0 3 1023 ø 1. We focus atten-
tion on resonances with the same periodicity of the driver
since those can establish new matched solutions. Reso-
nances on phase space can be located with help of the
condition k�rb,max� � 2p, where k�rb,max� is the wave
number of an orbit initially launched at drb�ds � 0 and
rb � rb,max . rb0; note that k�rb0� � k0 and k�rb,max !

`� � kmax � 2s0. Suppose that initially 2s0 , 2p. As
s0 grows due to an increase of the focusing field, for in-
stance, there will be an instant where 2s0 � 2p; at this
moment the corresponding resonance invades the phase
space placing itself over the trajectory varying between
the extremes rb,min � 0 and rb,max ! `. In the stability
diagram a vs s0 the onset of the resonance is observed
as a direct tangent bifurcation with the birth of two new
matched solutions —one stable with a , 1 and one un-
stable with a . 1. The bifurcation is indicated by the
letter “a” in Fig. 1(c) and occurs at 2s0 � 2p �s0 �
180±� as expected. As s0 keeps growing, the resonance
migrates towards rb0, and k�rb,max� approaches k0. In
Fig. 2(d) a Poincaré plot for d � 2.0 3 1023 and s0 �
207± shows the three fixed points corresponding to the
original matched solution plus the newly born stable and
unstable matched solutions. Further increase of s0 leads
to the condition k�rb,max� � k0 where the original fixed
point undergoes an inverse tangent bifurcation with the un-
stable fixed point of the resonance. At this point, “b” in
044801-2
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FIG. 2. Poincaré plots of the rb 3 drb�ds phase space. K �
3.0 and (a) d � 1.0, s0 � 75.4±; (b) d � 1.0, s0 � 109±;
(c) d � 1.0, s0 � 135±; (d) d � 2.0 3 1023, s0 � 207±; and
(e) d � 1.0, s0 � 292±.

Fig. 1(c), the original matched solution vanishes. How-
ever one is still left with the stable matched solution of
the resonance. As s0 increases, the stable matched solu-
tion displaces backwards toward rb � 0 in the phase space
and the events of the original matched solution are repro-
duced: the new stable fixed point undergoes a direct fol-
lowed by inverse period doubling bifurcations at a � 21
[s0 � 300± in Fig. 1(a)], and an inverse tangent bifur-
cation at a � 11 with an unstable fixed point of a yet
newer resonance which invades the phase space when the
new resonance condition 2s0 � 4p is met [s0 � 400±

in Fig. 1(a)]. The newer stable matched solution associ-
ated with the k�rb,max� � 4p resonance survives and the
whole process repeats itself roughly every 180± in s0,
for increasingly larger values of n indexing the general
resonance condition k�rb,max� � 2np. Therefore, exclud-
ing some gaps of instability with a , 21, there is always
a stable matched solution for the envelope equation which
persists and can be used to confine intense particle beams
to tighter radii much beyond s0 � 180±.

Nonperturbative cases, d � 1.—For larger d’s, the
scenario described above presents some changes. We
have mentioned that after the unstable fixed point of a
044801-3
resonance k�rb,max� � 2np undergoes an inverse tangent
bifurcation with the original fixed point (in the case
n � 1) or with the stable fixed point of a previous
resonance k�rb,max� � 2�n 2 1�p �n � 2, 3, . . .�, the
stable fixed point corresponding to k�rb,max� � 2np starts
moving backwards toward rb � 0. If d is sufficiently
small the stable fixed point never actually reaches rb � 0
and remains present in the phase space. However, if d
clears a certain threshold, the stable fixed point eventually
reaches rb � 0 and ceases to exist. At this point, no
closed orbit remains in the phase space. For d � 1.0
the initial life span of the stable point is so short that
it cannot be pinpointed near the tangent bifurcations
of Fig. 1(a). One also sees from Fig. 1(a) that the
point remains absent in wide regions along s0 (around
s0 � 200± and around s0 � 400±) . These gaps are
to be avoided if the goal is beam confinement. Now
by further increasing s0, the system retrieves its closed
orbits [10] and the stable fixed point reappears in the
phase space, such as in the points marked by the letter
“a” in Fig. 1(a)—confinement becomes possible again.
Figure 2(e) considers s0 � 292± to show how stable
typically is the fixed point after its reappearance; no
chaotic activity can be devised in the panel. Therefore,
for large d’s one alternates windows of stability in s0
where a stable matched solution exists, and forbidden
gaps (the meaning of “forbidden” taken in the context of
confinement), where the matched solution either exists but
is unstable, or is simply absent; further analysis reveals
that the size of the forbidden gaps increases with d.

We also perform self-consistent simulations using
Green’s function method [11], launching 1200 macro-
particles according to a Kapchinskij-Vladimirskij (KV)
distribution [1] with a beam radius corresponding to the
stable matched radius. The finite number of particles
in the initial condition acts as the seed for any possible
instability to develop. As the beam propagates along
the focusing channel we compute the KV beam radius
r̄b � �2	r2

j 
�1�2 � �2r2
RMS�1�2 [9], and the amplitude of

azimuthal beam modes Am � j	eimfj 
j, m � 0, 1, . . . ,
where rj and fj are the cylindrical coordinates of the
jth macroparticle and 	· · ·
 represents the average over
macroparticles. The results of a typical run over 100
periods for the case analyzed in Fig. 2(e) are shown in
Figs. 3(a)–3(c). The figures reveal that beam transport is
well behaved with neither radial [Fig. 3(a)] nor azimuthal
[Fig. 3(b)] instabilities affecting the periodicity of a sym-
metrical m � 0 beam shape. In addition, and importantly,
no emittance growth was detected so beam quality is
preserved. In Fig. 3(c) we display the last four periods of
the run of Fig. 3(a) to show the good agreement between
the beam envelope obtained from Eq. (1) (solid line) and
from the self-consistent simulation (circles).

A figure of merit, if one is interested in beams with the
smallest possible transverse dimensions, is the minimum
value attained by the matched and stable beam envelope
044801-3
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FIG. 3. Self-consistent simulations for (a) r̄b 3 s and
(b) Am 3 s, for the same parameters as in Fig. 2(e); (c) last
four periods of panel (a) comparing rb and r̄b; (d) r�

b 3 s0 for
K � 3.0 and d � 1.0.

as it oscillates along s. A final analysis is thus in order
on the minimum oscillatory value of rb , let us call it r�

b ,
versus the strength of the focusing magnetic field s0 and
is shown in Fig. 3(d). We take d � 1.0 and compare r�

b of
the original fixed point with that of the stable fixed point
of the k�rb,max� � 2p resonance. The most useful ranges
in both cases are the ones preceding the respective period
doublings [small gaps in Fig. 3(d)]. Even though stability
is recovered, the fixed points become closely surrounded
by an increasing number of higher-order resonances, such
as in Fig. 2(c), which may overlap leading to chaos [9].
From Fig. 3(d), r�

b corresponding to k�rb,max� � 2p is ap-
preciably smaller than the one corresponding to the origi-
nal fixed point. To perform a quantitative comparison, we
take two points—one corresponding to the original fixed
point and one to the resonance stable fixed point —both
preceding the respective period doublings and with simi-
lar stability (same a). We take the points s0 � 80.0± and
s0 � 292±, both with a � 20.56 [see Fig. 1(a)], the lat-
ter corresponding to the case displayed in Figs. 3(a)–3(c).
As one moves from one point to the other, the magnetic
field, which is proportional to s0, increases 3.65 times,
whereas r�

b decreases 6.0 times, as seen in Fig. 3(d); i.e.,
the decrease in r�

b is almost twice the increase in s0 if
one uses the resonance stable matched solution instead of
the original matched solution. In other words, an increase
of the magnetic field within its own order of magnitude
produces a noticeable reduction on the minimum oscilla-
044801-4
tory radius of the stable matched solution. Presumably, r�
b

becomes even smaller as one further increases the mag-
netic field and moves to stable fixed points of resonances
k�rb,max� � 2np with larger values of n [12].

In summary, we have studied the stability of periodically
focused intense particle beams based on the beam enve-
lope equation. The matched solutions undergo a series of
direct and inverse bifurcations as the parameters are var-
ied, and although the original matched solution analyzed in
previous works becomes unstable and eventually vanishes
as the focusing field strength increases, stability is recov-
ered for yet larger fields because new stable matched solu-
tions emerge. Results were validated with self-consistent
simulations. Thus, as the focusing field increases we do
not find one single threshold above which confinement is
impossible, as believed so far, but the existence of regions
of stability interrupted by gaps where the matched solu-
tion either becomes unstable or absent. Tighter focused
radii are shown to exist beyond previous thresholds using
the new stable matched solutions.
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