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The statistical properties of the local topology of two-dimensional turbulence are investigated using an
electromagnetically forced soap film. The local topology of the incompressible 2D flow is characterized
by the Jacobian determinant L�x, y� �

1
4 �v2 2 s2�, where v�x, y� is the local vorticity and s�x, y�

is the local strain rate. For turbulent flows driven by different external force configurations, P�L� is
found to be a universal function when rescaled using the turbulent intensity. A simple model that agrees
with the measured functional form of P�L� is constructed using the assumption that the stream function,
c�x, y�, is a Gaussian random field.
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Geometrical and topological ideas have played
important roles in our understanding of turbulent phe-
nomena. For example, the energy cascades of both three-
dimensional (3D) and two-dimensional (2D) turbulence
are generally pictured as hierarchical structures of interact-
ing eddies [1]. Although topological ideas find widespread
use in the interpretation of data and theory, they are not
generally used to analyze data. The reason for this is
because there currently exists no measurement technique
for the extraction of entire turbulent velocity fields from
a 3D fluid. Since the bulk of turbulence experiments
have been performed in 3D, this lack of enthusiasm for
topological approaches is an artifact of limited data. In
2D, however, the situation is more tractable since particle
tracking can measure entire 2D velocity fields [2]. In this
Letter the statistical properties of the local topology of
2D velocity fields extracted from a turbulent soap film are
investigated.

The local flow topology in a 2D fluid can be determined,
up to a coordinate transformation, by two numbers: the Ja-
cobian determinant, L�x, y� � ≠�yx , yy��≠�x, y�, and the
divergence of the flow field, = ? v. Since the velocity
fields under consideration are essentially incompressible,
the single field L�x, y� uniquely defines the flow. This
quantity lends itself to a simple geometrical interpretation.
If L�x, y� , 0, then in the reference frame of the fluid at
point �x, y� the flow structure is similar to that shown in
the inset in Fig. 1(a) and is called a saddle. On the other
hand, if L�x,y� . 0, the flow structure resembles that in
the inset of Fig. 1(b) and is called a center. If L�x, y� � 0,
the local field is in either a state of pure shear or the more
complicated nonlinear shear. The quantity L also plays a
significant role other than measuring the local topology of
a 2D fluid. If the 2D fluid has density r and experiences
external forces that are divergence free, then L is propor-
tional to the Laplacian of the pressure field, Dp � 2rL.
Therefore, saddles are regions of locally high pressure,
while centers are regions of locally low pressure. It has
0031-9007�01�87(4)�044501(4)$15.00
also been recognized that these topological structures are
responsible for enstrophy transfer and passive scale evolu-
tion in 2D turbulence [3,4].

One can express L in terms of two more familiar quan-
tities, the vorticity v and the strain rate s:

L �
1
4

�v2 2 s2� , (1)

where v2 �
P

i,j�≠iyj 2 ≠jyi�2�2 and s2 �P
i,j�≠iyj 1 ≠jyi�2�2. Hence, regions of large posi-

tive L correspond to strong vorticity, whereas regions of
large negative L correspond to strong elongation. Note
that this is not exclusive, meaning that saddle regions
could also have a large vorticity provided the local strain is
still larger. Similarly, centers could be strongly elongated
as long as their rotation rate exceeds the strain rate.

This Letter investigates the probability P�L� that a point
in turbulent flow is behaving as a saddle or a center of a
given strength. This is done in 2D using an electromag-
netically forced soap film (e-m cell) [5]. Theoretical pre-
dictions of the behavior of P�L� are also developed in this
Letter and are shown to be in agreement with most of the
features observed in the measurement.

A description of the operation of the e-m cell can be
found in [5] and is not reviewed in depth here. Briefly, the
e-m cell creates a state of energetically steady turbulence
in a 50 mm thick soap film using electromagnetic fields.
Data from the e-m cell have been shown to be consistent
with exact predictions that can be made using the forced
2D incompressible Navier-Stokes equation:

≠v
≠t

1 v ? v=v � 2=p 1 n=2v 1 F 2 av , (2)

Here, v is the velocity field, p is the internal pressure
field normalized by the fluid density, and F is the elec-
tromagnetic force field acting on the fluid. The constant
n � 0.016 cm2�s is the kinematic viscosity. The last term
© 2001 The American Physical Society 044501-1



VOLUME 87, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 23 JULY 2001
ba

FIG. 1. L field in turbulence driven by a linear array of magnets. For clarity, L2 and L1 are plotted in (a) and (b), respectively,
with darker shades indicating larger magnitudes of L6. The solid lines are the contours of the stream function, c , and the large tick
marks correspond to distances of 1 cm. The insets in (a) and (b) show the local flow for a saddle and center, respectively.
in Eq. (2), 2av, accounts for the frictional effect of air
acting on the soap film. This system has two dimensionless
control parameters which can be varied by changing either
the magnitude of F or a. The first is the Reynolds number
defined as Re � yrms�kinjn and the second is the dimen-
sionless air friction g � a�k2

injn. Here kinj is a typical
wave number describing the spatial variation of the elec-
tromagnetic force field, called the injection wave number.
In these experiments, g assumes values from 0.1 to 1, cor-
responding to a regime of weak to moderate damping, and
Re varies from 10 to 100.

To establish that the local topology measurements
are not merely a reflection of the geometrical aspects
of the external forcing two different force configura-
tions were used. Both force fields were unidirectional
with Fy � 0. The Fx for each field varied in different
spatial patterns, which are called linear and square. Fx

is given by Fx � F0 sin�k0y� for the linear field, and
Fx � F0 sin�k0y�

p
2 � sin�k0x�

p
2 � for the square field.

For both cases, kinj � k0 � 2p�a, with a � 0.6 cm for
the linear forcing and a � 0.8 cm for the square forcing.
Unless otherwise noted the magnitude of the force fields,
F0, varied in time with a square waveform of 3 Hz.
Finally, topological aspects of decaying turbulence were
also investigated by driving the cell and suddenly switch-
ing off the drive. It is generally believed that decaying
turbulence is very different from forced turbulence due to
the absence of an inverse energy-cascade range [6].

The velocity field is measured by particle tracking ve-
locimetry [5], which typically yields 5000 velocity vectors
per image. Figure 1 is a typical L field calculated from
a single velocity field driven by the linear forcing with
yrms � 10 cm�s. For clarity, the distribution of centers
044501-2
L . 0, denoted as L1, is plotted separately from the dis-
tribution of saddles L , 0, denoted as L2. Unlike the
velocity fields, which tend to be spatially extended, the
distribution of L appears to be localized or spotty, more so
for centers than for saddles.

Sequences of 400–500 L fields were acquired for vari-
ous values of g and Re, and for different types of forcing
(see Table I). From these, probability distribution func-
tions (PDFs) of L were computed, and the results are
shown in Fig. 2. All of the PDFs have a strikingly simi-
lar form. One observes that the PDF is asymmetric with a
nearly exponential decay for L , 0 and an initially quick,
perhaps stretched exponential, decay for small L . 0,
eventually relaxing to what appears to be exponential de-
cay for large L . 0. The anomalously long tail of the PDF
for L1 is consistent with the visual appearance of velocity
fields in that powerful vortices are more conspicuous than
saddles in the flow. Finally, we note that the PDF is non-
analytic at L � 0.

TABLE I. Global constants for different types of forcing in the
e-m cell. Here, t is the amount of time the system was allowed
to decay before taking data. The symbols correspond to those
plotted in the later figures. Re and g values listed for decaying
turbulence denote the initial values of these parameters.

Forcing type Re g t (s) b L̃�s22� z Symbol

Linear 60 0.28 na 0.31 712 2.53 ¶
Linear 60 0.56 na 0.31 1014 2.60 �
Linear 60 0.97 na 0.31 1282 2.54 ±

Square 80 0.6 na 0.4 898 2.84 �
Decay 70 0.5 0.5 0.35 104 2.54 �
Decay 70 0.5 1.0 0.35 39.1 3.4 D
044501-2
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FIG. 2. (a) The distribution function P�L� for (a) linearly forc-
ing with Re � 60 and g values of 0.28 (¶), 0.56 (�), and 0.97
(±), (b) square forcing with Re � 80 and g � 0.6, and (c) de-
caying turbulence at two separate times, 0.5 s (�) and 1.0 s (D)
after the forcing is turned off. All of these data sets are plotted
together in (d) after normalizing by the respective Lrms.

The PDFs in Figs. 2(a)–2(c) can be collapsed on a single
master curve if L is normalized by its rms value, x �
L�Lrms. As seen in Fig. 2(d), over four decades in the
vertical scale, the quality of the data collapse is excellent.
The agreement between decaying and driven turbulence
also indicates that P�L� is independent of the presence or
lack of an inverse cascade. These observations lead us to
believe that the functional form of P�L� is universal for 2D
turbulence, though the flow appears to be visually different.

The asymmetry of P�L� is clearly reflected in the
moments of the PDF. All measurements show that
�L� � 0, yielding �L2� � 2�L1�. However, the second
moment is tilted toward the positive side with z �
��L1�2����L2�2� 	 2.5 (see Table I). Though the data
are not presented here, it should be noted that these results
in the turbulent regime are markedly different from those
obtained in the laminar flow regime with an ordered array
of vortices. In this case, the PDF is nearly symmetric with
�L2� � 2�L1� and ��L1�2� � ��L2�2�.

We also considered the conditional probability of enstro-
phy v2 and square strain rate s2 for a given L. We find
that the conditional PDF for both v2 and s2 are approxi-
mately exponential. The conditional expectation values for
�s2� and �v2� for a given L are plotted in Fig. 3. It is no-
ticeable that while �s2� and �v2� depend linearly on L

for L , 0, such a linear relation does not hold for small
positive L.

The universal nature of P�L� indicates that the proba-
bility distribution can be understood from basic principles
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FIG. 3. The conditional expectation values of s2 (±) and v2

(≤) for a given L. The measurement is taken from a linearly
forced flow at Re � 60 and g � 0.56.

and minimal models without requiring a detailed model
of the flow. Since the experiment approximates 2D
incompressible flow, the velocity can be written in
terms of a stream function c�x, y� with yx � ≠yc

and yy � 2≠xc. The Jacobian determinant is then
L � 2�≠x≠yc�2 1 �≠2

xc� �≠2
yc�.

We can show that �L� � 0 if the correlation function of
c is translationally invariant, that is, �c�x, y�c�x 0, y0�� �
M�u, w� is a function of u � jx 2 x0j and w � j y 2 y0j

only. If we further assume that M�u, w� is analytic at
u � w � 0, we find

�L� � �2�≠xyx� �≠yyy� 1 �≠xyy� �≠yyx��

� 2�≠u≠w≠w≠uM� 1 �≠2
u≠2

wM� � 0 . (3)

Note that all derivatives of M here and below are evaluated
at u � w � 0. We expect that �L� � 0 for a wide variety
of flows since we do not assume that M is isotropic, simply
that it is translationally invariant.

To understand the PDF in the turbulent regime, we need
a further assumption. The simplest assumption is that the
stream function is a Gaussian random field. The deriva-
tives of a Gaussian field are also Gaussian so that ≠xyx ,
≠yyy, ≠yyx , and ≠xyy are all Gaussian random fields with
their cumulants given by 4th order derivatives of M�u, w�.
Hence it is straightforward to calculate P�L�, since L is a
functional of Gaussian fields.

The PDF, P�L�, is found to depend on only
two positive parameters. The first parameter, L̃ �q

��≠xyy�2� ��≠yyx�2� �
p

�≠4
uM� �≠4

wM� simply sets the
scale of L and hence does not affect the shape of the
distribution. The second parameter b is

b � 2
��≠xyy� �≠yyx��q

��≠xyy�2� ��≠yyx�2�
�

≠2
u≠2

wMp
�≠4

uM� �≠4
wM�

. (4)

Hence b is the normalized correlation of the shear strain
rates in the different directions and is the only parameter
044501-3
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that affects the shape of P�L�. In principle, b is a free
parameter. However, if M�u, w� has elliptical symmetry,
that is, M�u, w� � M�u2 1 cw2� where c is a constant, b
assumes the value 1�3.

Introducing a rescaled L via L0 � L�L̃, we can write
P�L0� as an integral of the PDF of the Gaussian variables,
≠xyx , ≠yyy , ≠xyy , and ≠yyx [7]:

P�L0� � C exp

µ
2L0

1 1 b

∂ Z `

rmin

dr
Z 2p

0
df

r
p

L0 1 r2

3 exp

∑
2r2

µ
1

1 1 b
1

sin2f

1 2 b
1

cos2f

2b

∂∏
,

(5)

where r � �d�4� �≠xyy 2
1
p

d
≠yyx �2 1 �≠yyy�2, d �

��≠yyx�2����≠xyy�2�, and cosf � 2≠yyy�r. The limits
of integration depend on whether L0 is positive or negative
with rmin � 0 if L0 . 0 and rmin �

p
2L0 if L0 , 0,

and C is a normalization constant. For general b, this
integral must be done numerically. However, for b � 1�3
we obtain a close form:

P�L0� �

8<
:

2Cp3�2

3 e3L0�2 for L0 , 0 ,
2Cp3�2

3 e3L0�2Fc� 3
2

p
L0� for L0 . 0 ,

(6)

where Fc is the complemetary error function. The differ-
ent lower limits of integration, rmin, for positive and nega-
tive L0 makes P�L� asymmetric and nonanalytic at zero.
For negative L0, P�L0� is exponential while for positive
L0, P�L0� has a nonexponential behavior for small L0 fol-
lowed by an exponential decay at large L0. The asymptotic
exponential decay rates k6 can be obtained for general b
with k1 � 1��1 1 b� and k2 � 1��2b�. Since b , 1,
k . k1 and the asymptotic decay is faster for negative L0.

To test this model, b was measured directly from the
experimental flow fields and found to be close to the ex-
pected value of 1�3, ranging between a low value of 0.3 for
linear forcing to a high value of 0.4 for the square forcing
(see Table I). The scaled PDF determined from Eq. (6)for
b � 1�3 together with the experimental PDFs is displayed
in Fig. 4. The assumption that the stream function is a
Gaussian field captures all the main features of the ex-
perimental PDF. In particular, the theory reproduces the
asymmetry between positive and negative L, and the expo-
nential form of P�L� for negative L. For L . 0, the the-
ory predicts the pronounced curvature on the semilog plot
in agreement with the experiment. For larger L the theory
predicts that the PDF decays more slowly for positive than
for negative L in agreement with observations. However,
the experiment shows a much more pronounced curvature
in the large positive L tail than the Gaussian model. This
may indicate a breakdown of the Gaussian assumption in
regions of large vorticity.
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FIG. 4. The same rescaled PDF as in Fig. 2(d) together with
the theoretical PDF calculated from Eq. (6) with b � 1�3 (solid
line).

To summarize, the PDF of the Jacobian determinant in
2D turbulence deviates strongly from Gaussian behavior
with prominent exponential tails for large jLj. Moreover,
P�L� is nonanalytic at L � 0 and decays more slowly for
positive L or the centers. This is evidenced by the ra-
tio ��L1�2����L2�2� 	 2.5. The nonanalytic nature stems
from the fact that centers and saddles are topologically dis-
tinct and cannot transform continuously from one to the
other. The experimental findings reported here are uni-
versal, independent of turbulent intensity and the means
of turbulence generation. That this behavior is universal
may be linked to the fact that L is a local quantity and
therefore insensitive to the long-range spatial correlations
of the turbulent velocity field. The locality of L may also
explain the success of the Gaussian approximation for the
stream function c�x, y�. This Gaussian assumption may
prove useful in investigating other features of 2D turbu-
lence including 2D scalar turbulence.
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