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Detecting Phase Synchronization in a Chaotic Laser Array
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Detection of phase synchronization of coupled chaotic oscillators is examined experimentally for the
case of a linear laser array. Phase variables are computed by applying a Gaussian filter, peaked at a posi-
tive frequency, to the signal obtained from the intensity time series of the individual lasers. Relationships
between different frequency components of the oscillator dynamics that are not otherwise apparent are
unambiguously detected.
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Synchronization of chaotic systems has been explored
extensively over the past decade; for a review, see Ref. [1].
Various definitions of synchronization have evolved. The
concept of generalized synchronization [2] has been
introduced in addition to the obvious notion of identical
synchronization, and measures of the extent of synchro-
nization have been defined. Recently another concept in
synchronization, namely, phase synchronization, has been
shown to be a useful tool for the analysis of chaotic signals
arising in a variety of situations. Phase synchronism of
chaos was originally pointed out by Pikovsky [3] and
by Stone [4] for the case in which a chaotic oscillator
is perturbed by an external periodic signal (we call this
“periodic pacing”). More recently, the idea of phase syn-
chronization between coupled chaotic oscillators has been
introduced [5]. This concept has proven to be very useful,
especially in the analysis of biological data (e.g., Ref. [6]).
Experimental observation of phase synchronization in
chaotic physical systems has been recently reported
[7–10]. For a review of research in phase synchronization
of chaos, see Ref. [11].

In this Letter we focus on the detection of phase syn-
chronization in a chaotic coupled laser system. The in-
tensity time series studied are nonstationary, noisy, and of
limited duration. This situation is common in many ex-
perimental settings. The introduction of a suitable quanti-
tative definition for the phase of a chaotic signal is the key
idea in any study of phase synchronization [6]. It has been
found that, for time series generated by chaotic computer
models, such as the Rössler system, the means by which
phase is computed is not critical; various reasonable defi-
nitions appear to be equally effective in evidencing (or not
evidencing) phase synchronism. In contrast, for our ex-
perimental data set we find that the definition of phase can
be crucial to the detection of phase synchronization. We
demonstrate a method that allows us to detect and quantify
phase synchronization for our data.

In particular, we report here the observation of phase
synchronization in a linear laser array consisting of three
elements with chaotic intensity fluctuations. Arrays of
coupled lasers often display chaotic dynamics [12–15];
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individual intensity time series for the lasers are complex,
but they may display synchronization in dramatic ways.
This is illustrated by the identical intensity synchronization
observed between the two outer lasers in a three laser linear
array [15] where the lasers are nearest-neighbor coupled.
The center laser is not synchronized in any obvious way
to the outer ones, though it mediates the interaction and
synchronization of the outer elements. While it is simple
to identify identical synchronization of intensities, it is
much more difficult to discern relationships between the
dynamics of elements of the array that are not identically
synchronized. Typical experimental measurements record
intensity time series without any determination of the
phases of the fields for the laser elements. The relative
optical phases of the array elements determine the in-
tensity distributions in the far field. Phase dynamics and
amplitude chaos were studied experimentally and nu-
merically for two spatially coupled lasers [12,13], where
phase locking was determined through measurements of
interference fringe visibilities. It is difficult, however, to
acquire and analyze dynamically evolving interference
patterns at time scales comparable to those for the fluctua-
tions of the fields (microseconds or shorter). Therefore,
it is important to define new, experimentally accessible
phase variables that will allow quantitative detection of
phase synchronization between the array elements.

We consider now a fairly general means by which a
phase may be associated with a real scalar signal, I�t�.
Representing I�t� by its Fourier transform u�n�, I�t� �
�2p�21

R`

2` exp�int�u�n� dn, we note that the time varia-
tion of each Fourier component, u�n�eint, is a complex
number whose phase continually increases (decreases)
with time for n . 0 (n , 0). Thus, one way to introduce
a phase is to suppress the negative n components by
replacing u�n� by 2u�n�u�n� [where u�n� is the unit step
function, u�n� � 1 for n . 0 and u�n� � 0 for n , 0].
In this case, we obtain a superposition of rotating complex
numbers all of which have increasing phase,

VA�t� � p21
Z `

0
eintu�n� dn . (1)
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Thus we may reasonably expect VA�t� to execute rotation
in the complex plane with continually increasing phase.
The function VA�t� is Gabor’s “analytic signal” [16], which
has been recently introduced for the purpose of the study
of phase synchronization of chaos in Ref. [5]. Noting that
the inverse transform of 2u�n� is d�t� 1

i
p P

1
t , we can

express the analytic signal as

VA�t� � I�t� 1 iIH�t� � I�t� 1
i
p

I�t� Ø P
1
t

, (2)

where IH�t� and I�t� are related by the Hilbert transform
IH�t� � p21P

R`
2` dt 0 I�t0���t 2 t0�, Ø denotes convolu-

tion, and P
1
t is the principal part of 1�t. Writing

VA�t� 2 �VA� � RA�t�eiFA�t�, (3)

where RA�t� and FA�t� are real, and �VA� is the time av-
erage of VA�t�, we call FA�t� the analytic phase. Here
we note that it is useful to consider more general choices.
In particular, we can replace u�n� in the original Fourier
transform by f�n�u�n�, where f�n� is suitably chosen
[Eq. (2) corresponds to f�n� � 2u�n�]. Specifically, we
will be interested in the choice of a Gaussian for f�n�,
f�n� � exp�2�n 2 no�2�2s2�; this gives

VG�t� �
1

2p

Z `

2`
dn einte2�n2no�2��2s2�u�n�

� I�t� Ø F�t� , (4)

where F�t� � s�
p

2p �21 exp�2inot 1 s2t2�2�. We then
define a Gaussian phase by

VG�t� 2 �VG� � RG�t�eiFG �t�. (5)

The frequency no and the Gaussian’s width s are parame-
ters in the definition of FG�t�. Note that, similar to the
choice f�n� � 2u�n� resulting in the analytic signal, the
choice of a Gaussian again emphasizes positive frequencies
(we take no . 0). We find that application of a frequency
bandpass filter as in Ref. [6] produces similar results for
our data. For our experimental data set, we have tested for
phase synchronization using the phase definitions FA�t�
and FG�t�, as well as some others [17]. We find that the
Gaussian phase is superior for our purposes, and we believe
that this may also be the case in other situations involving
nonstationary, noisy time series of limited duration [18].

The chaotic system studied consists of three parallel, lat-
erally coupled neodymium doped yttrium aluminum garnet
(Nd:YAG) lasers �l � 1064 nm� of approximately equal
average intensities [15]. A thick intracavity étalon ensures
single longitudinal mode operation. Coupling through the
electric fields of the individual beams exists only for adja-
cent pairs. This system of nearest-neighbor coupled lasers
is generated by end-pumping the Nd:YAG laser crystal
with three identical high power Ar1 laser �l � 514.5 nm�
beams. In the observations reported here, the coupled
lasers display chaotic dynamics; the coupling strength de-
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creases for larger separation distances [13,15]. The inten-
sities of the three coupled lasers are sampled individually
with three photodetectors and a digital oscilloscope.

Experimental intensity measurements are displayed in
Fig. 1 for a distance of 0.64 mm between adjacent pump
beams. The two outer lasers in the array (lasers 1 and
3) have nearly identical intensity fluctuations and power
spectra. Chaotic bursting is present in the intensity time
series of the coupled elements [Figs. 1(a)–1(c)], which are
thus of a distinctly nonstationary nature. The correspond-
ing power spectra are shown in Figs. 1(d)–1(f). Plotting
the intensity of laser 3 versus that of laser 1 [Fig. 1(h)],
we find near-identical synchronization between the chaotic
signals of the two outer lasers. However, the outer lasers
are able to interact only with each other through the inter-
mediary center laser (laser 2) since only nearest-neighbor
coupling is present. Figures 1(g) and 1(i) are plots of the
intensity time series for the center laser (laser 2) versus
those of the outer lasers (lasers 1 and 3). No synchro-
nization relationship is obvious, even though the center
laser mediates the identical synchronization of the outer
lasers. If one is given only the time series of one of the
two outer lasers and the time series of the middle laser,
how can we test for interdependence between these time
series? This is the question we address in the remainder of

FIG. 1. (a)–(c): Experimental intensity time series (25 000
data points, sampled every 80 ns), showing chaotic bursts and
similarity of the dynamics of lasers 1 and 3; (d)–(f): corre-
sponding power spectra. Note the similarity of the spectra of
the outer lasers and difference of these with respect to the cen-
tral laser; (g)–(i): synchronization plots of the intensity time
series for pairs of lasers. Lasers 1 and 3 are synchronized iden-
tically, while laser 2 is not obviously synchronized to the outer
lasers.
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this paper, and for this purpose we use the concept of phase
synchronization.

As discussed above, an analytic phase, FA�t�, and a
Gaussian filtered phase, FG�t�, are used. For an experi-
mental data set, VA,G�t� is generated by applying an appro-
priate fast Fourier transform algorithm to I�t�, multiplying
the result u�n� by f�n� and applying an inverse fast Fourier
transform. FA,G�t� is defined to be continuous in time,
i.e., as FA,G�t� increases through 2p it is not discontinu-
ously set equal to zero. Thus �FA,G�t� 2 FA,G�0���2p

represents the number of counterclockwise rotations exe-
cuted between time 0 and time t by the complex number
VA,G �t� 2 �VA,G�.

Phase synchronization between an outer laser and the
center laser (lasers 1 and 2) is shown by plotting their
relative phase versus time (Fig. 2). Figure 2(a) shows
the difference of the analytic signal phases DFA�t� for
these lasers, which has a large range of variation (	130
rotations). Phase synchronization is not discernible. Next,
in Fig. 2(b), the difference of FG�t� for these two lasers is
plotted; these phases were calculated with no � 140 kHz
(solid line) or no � 80 kHz (dotted line), and s �
15 kHz. These no were selected as the power spectra
display significant peaks at these values. The product of
s and the length of the time series is much greater than
unity, ensuring a physically significant phase for the given
data. Synchronization of the side and central lasers in the
frequency regime of no � 140 kHz is immediately appar-

FIG. 2. Time series for the relative phases (a) DFA�t� and
(b) DFG�t� for lasers 1 and 2. Synchronization is not discernible
in (a), while (b) shows phase synchronization when the Gaussian
filter is centered at n0 � 140 kHz. Intermittent periods of phase
synchronization are observed with no � 80 kHz (dotted line).
The dashed line is the relative phase computed with a surrogate
time series; as expected, it does not show synchronization. In
all cases in (b) s � 15 kHz for the Gaussian filter.
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ent as the flat portion of this plot extends across essentially
the entire time of observation (solid line). Periods of
phase synchronization and phase slipping are found in the
less correlated frequency regime of no � 80 kHz (dotted
line). No indication of synchronization is found when one
of the component phases of DFG�t� for no � 140 kHz,
s � 15 kHz, is replaced with a surrogate phase extracted
from another experimental data set taken from this array
under identical conditions [dashed line in Fig. 2(b)]. We
note that plots similar to that in Fig. 2(a) showing no syn-
chronization were also obtained for the other definitions
of phase mentioned in [17].

The benefits of selecting dynamics of specific fre-
quency ranges with a Gaussian filter are evident also from
a normalized probability distribution of relative phases
�DF mod2p�. Figure 3 displays a large peak for the
Gaussian filtered phase (no � 140 kHz and s � 18 kHz),
while the analytic signal phase shows only a smaller,
much broader peak. The surrogate cases display nearly
uniform distributions.

A quantitative measure of synchronization is obtained
by computing entropies from probability distributions of
the phase differences (entropies were introduced in [6] to
quantify phase synchronization). We are able to quantify
the extent of phase synchronization for different frequency
ratios by moving the center of the Gaussian filter over the
frequency range of interest. Figure 4 displays this method
for visualization of phase synchronization between lasers
1 and 2. Significant phase synchronization is seen only for

FIG. 3. Normalized probability distribution of relative phases.
The Gaussian (no � 140 kHz, s � 18 kHz) phase distribution
shows a large peak compared with the analytic signal phase
distribution. Computation with surrogate phases yields nearly
uniform distributions (open symbols).
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FIG. 4. Phase synchronization of laser 1 with laser 2 for fre-
quency ratios (a) 1:1, (b) 1:2, and (c) 2:1. In all cases s �
18 kHz. Good 1:1 synchronization occurs in the range 125–
200 kHz (a), while 1:2 and 2:1 synchronization are weaker and
occur over more restricted frequency ranges (b) and (c). The
dashed lines are the results of computations with surrogate time
series.

frequency ratios of 1:1 [Fig. 4(a)], 1:2 [Fig. 4(b)], and 2:1
[Fig. 4(c)]. The synchronization measure Q � 1 2 Srel

is used, where Srel is the normalized entropy [6] given
by Srel �

Pn
j�1 PjlnPj�ln�1�n� (where Pj is the proba-

bility of DFG mod2p being in bin j). When a surrogate
time series (dashed lines in the figures) is introduced for
one of the laser phases, the phase synchronization peaks
disappear.

In conclusion, our work illustrates that the detection of
phase synchronization may require careful consideration
of the nature of the time series measured. In the experi-
mental example considered here, the time series are of a
distinctly nonstationary nature, and it is clearly advanta-
geous to introduce a Gaussian filtered phase variable. We
are then able to quantitatively assess phase synchronization
for different frequency components of the dynamics, which
would not have been discernible otherwise. This technique
should be widely applicable in situations of physical and
biological interest.
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