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We analyze the localization properties for eigenvectors of the Dirac operator in quenched lattice QCD
in the vicinity of the deconfinement phase transition. Studying the characteristic differences between the
Z; sectors above the critical temperatute we find indications for the presence of calorons.
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One of the most discussed topics in hadron physics ifemporal (spatial) extent of the lattice. All boundary
the chiral phase transition of QCD, and the microscopi@onditions are periodic except for the temporal boundary
processes connected with it. Many current and plannedonditions of the fermions which are antiperiodic. The
experiments are at least partially motivated by the hopéemperature is given bw7 = 1/L, with the lattice
that they will shed some light on the issues involved. spacinga. We fix L, = 6 and varya (and hencel) by

In this Letter we study the localization properties of thechangings = 6/g>.
lattice Dirac operator in the neighborhood of the chiral We work in the quenched approximation with staggered
phase transition. We are motivated by the fact that onéermions, i.e., with the Dirac operator
of the most popular pictures of the phase transition relates 4
it to the properties of QCD instantons and anti-instantons D = »_ 2 au(0) [8yxt2Up(x) — 8yx 2 ULV,

(see, e.g., Ref. [1]). The origin of this connection is the p=1 4 @)
following observation: For each isolated instanton or anti-

instanton there exists a localized zero mode of the Dira#here a,(x) = (=1)"" "% and the U, are the link
operator. For a liquid of instantons and anti-instantongaiables. The eigenvalues of D come in pairs of *iA
these zero modes should be perturbed to form a band #¥fith A real, so we can restrict ourselvesto positive A inthe
small eigenvalues. At higher temperatures it is thought thafollowing. In the continuum limit this action corresponds
instantons and anti-instantons may pair to form moleculed0 four quark flavors. From now on we set a to 1.

and that the associated modes will no longer have particu- Quenched QCD has an additional Z; symmetry of the
larly small eigenvalues, but instead become an inconspicigauge sector, which is spontaneously broken in the de-

ous part of the bulk spectrum. confined phase [4]. In the confined phase the expectation
The Banks-Casher formula [2], value of the Polyakov loop P is zero, whereas in the de-
7 poirac(0) confined phase |P| acquires an expectation value, and the

, (1) phase of P clusters around the values §p = arg(P) = 0,
4 +247 /3. Thefermion action does not share the Z; symme-
relates the chiral condensdi#y) to ppiac (0), the density  try, so fermionic quantities can depend on the Z; sector. It
of Dirac eigenvalues at zero, evaluated in the (large) volwas found in Ref. [5] that the chiral condensate computed
ume V. Thus we expect that if the instantons and anti-from the configurationswith 6, = 0 vanishes above T, as
instantons form a liquid, chiral symmetry will be broken, expected. For 6, = =27 /3 it remains finite in a certain
but that if they form instanton—anti-instanton moleculestemperature range above T... This behavior can be under-
chiral symmetry will be restored. stood in Nambu—Jona-Lasinio models [6,7] and in RMT

If this interpretation is correct, the chiral phase transition[8]. The point isthat the boundary conditions of the Dirac
should reflect itself also in a characteristic change of th@perator are not invariant under Z3 transformations, and
localization properties of the lowest Dirac eigenvectorsfor §p = =27 /3 the new boundary conditions lead to a
This is the main motivation for our studies. decrease of the Dirac eigenvalues [8]. According to the

In addition, we are interested in comparing our lattice re-Banks-Casher relation, Eq. (1), this implies that the con-
sults with predictions from random matrix theory (RMT). densate will disappear only for larger temperatures, i.e.,
Such a comparison allows us to distinguish generic fronthe transition temperature is higher for these sectors. For
QCD-specific properties. Similar studies were performegphenomenological comparisonsone should usethedp = 0
before in Ref. [3]. In this paper, however, the authors anasector as this one is energetically favored for dynami-
lyzed a specific instanton-liquid approximation to QCDcal fermions. (The sectors p = *27/3 are physicaly
while we study lattice QCD. equivalent to each other.) We refer to the 6p = 0 sector

As usual, we simulate a finite-temperature system bys the real sector and to the §p = =27 /3 sectors as the
working on a lattice withL, < Ly, whereL, (L;) is the  complex sector.

(qq) = —
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Large temperatures correspond to a small extension of
the lattice in the temporal direction. The periodic bound-
ary conditions for the gauge fields thus imply that the field
equations have solutions with nontrivial topology which
look rather like an instanton chain [9]. Such configura-
tions, called calorons, have been the topic of intense in-
vestigations [1].

The index theorem tells us that the continuum Dirac op-
erator has achiral zero mode in a caloron field, so we will
search for calorons by looking at the chiral and localiza-
tion properties of the eigenvectors of the low-lying eigen-
values of D. To calculate the eigenvalues and eigenvectors
we used the Arnoldi method as implemented in Ref. [10].
This method allows us to choose the number of the lowest
eigenvalues and eigenvectors to be calculated.

In the continuum a zero mode has a definite chiral-
ity (= expectation value (ys)) of *1, while modes with
A # 0 have (ys) = 0. Staggered fermions possess only a
restricted chiral symmetry, so in this case we expect (ys)
values between —1 and 1. In Fig. 1 we show a scatter plot
of (ys) against Dirac eigenvalue, for atemperature dightly
above T.. We can see that in al sectors the data points
form clusters. There are some eigenmodes with very small
eigenvalue, and (ys) = *0.2, while the bulk of the eigen-
vectors have a larger A, and (ys) near zero. The modes
labeled 1 to 3 in Figs. 1 and 2 will be discussed below.

A large value of (ys) suggests that the corresponding
eigenvectors have a topological origin, in which case they
should be associated with specific localized states. This
interpretation is supported by the fact that these modes
are approximately fourfold degenerate as they should be
because of the flavor symmetry of staggered fermions in
the continuum limit. One of our main results is that these
states may be important for understanding the differences
between the Z5 sectors.

As ameasure of the localization of our quark eigenvec-
tors ¢ (x) (A isthe Dirac eigenvalue, o a color index) we
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FIG. 1. (ys)vs A. The measurements are on a 123 X 6 lattice
at B = 6.10 for both sectors, §» = 0 and p = *27/3.
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use a gauge-invariant inverse participation ratio (IPR), de-
fined by

Zx 2N (X)2
> AP ®)

where V is the number of lattice sites and p,(x) is the
gauge-invariant probability density
N,

@ =Y P (4)
a=1

For acompletely delocalized state [all p,(x) the same] one
finds I, = 1, whereas a state localized on a single lattice
site [only one nonzero p,(x)] would have I, = V. (The
staggered fermions' chiral symmetry means that, in fact,
an eigenstate can never be completely localized, since al
eigenstates must have half their probability on even sites,
and half on odd.) I, is aso a measure of the standard
deviation of p,(x),

IzEV

_ Zx[p/\(x) - ﬁ/\]2
VPi '
Chiral RMT predicts that the average value of I, is
N. + 1)V yvox
(= Qe T DV v

=+ —
NV +2 N,

To elucidate the relevance of the IPR let us note that in

condensed matter physics the size of the IPR decides, e.g.,

whether a disordered mesoscopic sample is a meta (I,

close to the RMT prediction) or an insulator (I, large).

We have investigated the behavior of I, on finite tem-
perature lattices, on both sides of the deconfinement phase
transition, which liesat 8 = 5.89 for L, = 6 in the ther-
modynamic limit [11].

Slightly above T. the localization properties show char-
acteristic differences for the different Z; sectors. In the
real sector the effect of localization is strongly pronounced
whileit isnearly absentinthe 6p = +2/3 sectors. This
isillustrated in Figs. 2 and 3 in which we divided the en-
sembles of gauge configurations into configurations with

L —1

(%)

for N. = 3. (6)
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FIG. 2. A scatter plot of the localization vs chirality.
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FIG. 3. From top to bottom, the average IPR for temperatures
below, dightly above, and well above the chiral phase transition
plotted separately for the Z; sector with 6, = 0 and the Z;
sectors with §p = *27 /3. The average was performed for the
1st, 2nd, ..., 20th eigenvalue of each gauge field configuration.
The dashed line is the RMT prediction, 4/3.

—7/3 = 0p < /3 (rea sector) and all other configura-
tions (complex sector). A difference between localization
in the different sectors tells us immediately that the eigen-
states must be extended in the time direction, because an
eigenstate localized in time would be unaffected by a Z;
transformation. Naturally, we do not expect any differ-
ences in the localization propertiesfor the different sectors
when 7T < T..

We studied these characteristic differences for high tem-
peratures in more detail and found features which suggest
that they can be attributed to the effects of calorons, aswe
shall now explain.

Harrington and Shepard found exact SU(2) instanton so-
lutions at finite temperature [9], which they called calorons
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(for areview see Ref. [12]). Their solution consists of a
one-dimensional chain of instantons, with a periodic repeat
at adistance 1/T. Thereis asingle physicaly relevant pa-
rameter, RT, which givestheinstanton radius R, relative to
the scale set by the temperature. When RT < 1 the solu-
tion looks like an isolated instanton, but when RT ~ 1 fi-
nite temperature effects become significant. Thisinstanton
chain satisfies the 't Hooft ansatz [13], so the techniques
described in Ref. [14] can be used to find the fermionic
zero modes [15]. For small RT these look like the zero
modes of an isolated instanton, but as RT increases, the
modes become extended in time, though they remain local-
ized in space. These SU(2) solutions can easily be embed-
ded in SU(3), leading to solutions which correspond to the
0p = 0 sector. To investigate the other sectors, we need
solutions where the timelike Polyakov loop has a nonzero
phase at spacelike infinity. We can construct such solu-
tions either by adding a constant A4 background field with
a color that commutes with the SU(2) subgroup contain-
ing the caloron, or by choosing the fermion field boundary
condition appropriately. In either case the fermionic zero
modes are readily constructed. One can aso find pure
SU(2) solutions with a Polyakov loop background [16].
It would be interesting to study the relationship between
these solutions and the solutions found by embedding the
Harrington-Shepard solution in SU(3).

The localization of the embedded caloron’ s fermion zero
mode depends heavily on the Z5 sector. Asymptatically the
modes fall off like

|l = exp[—2(7 — |0p])rT]/r?, (7)

where r is the three-dimensional distance from the caloron
axis. (At 6p = 0, this agrees with the behavior given in
Ref. [12].) This is unlike the case of a single instanton,
which has ||?> which drops off like a power of r. We
see from Eq. (7) that the correlation length for the zero
mode is smallest in the real sector (6, = 0), and that the
complex Z5 sectors (fp = =27 /3) have modes in which
the radius is about 3 times greater, and so they occupy a
much larger volume. It is thus tempting to assume that the
strong difference between the localization propertiesin the
Z5 sectors is due to the fact that our lattice configurations
contain calorons. If so, the localization in four dimensions
should show the characteristic stringlike pattern discussed
above.

In Fig. 4 the localization itself and the local density
of the expectation value of ys are shown for a highly
localized state in the 6p = 0 sector (mode 1 of Figs. 1
and 2). To plot the complete four-dimensional lattice we
have introduced the two coordinatesi = x + 12rand j =
y + 12z with the Euclidean lattice coordinates x,y,z =
0,1,2,...,11 and ¢t = 0,...,5. This coordinate system
representsthelatticeasa6 X 12 array of x-y slices, which
generates the approximately periodic structure visible in
theplot. From the upper plot, we seethat the stateisindeed
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FIG. 4. A “caoron” state (mode 1 of Figs. 1 and 2) on a
123 X 6 lattice for B8 = 6.1 in the 6, = 0 sector. We have
introduced the coordinatesi = x + 12r and j = y + 12z with
the lattice coordinates x,y,z = 0,1,...,11 and t = 0,...,5.
The gauge-invariant density is plotted above, the expectation
value of ys below. Both show localization in space but not in
time.

spatially localized, but extended in time. The lower plot
demonstrates that the eigenstate in question is an approxi-
mate chiral eigenstate. A continuum caloron would pos-
sess an exact chiral eigenstate. Unfortunately, staggered
fermions exhibit only part of the continuum chiral sym-
metry, which is the reason why we do not find perfect vy;
eigenstates. It would therefore be very interesting to repeat
these studies with Ginsparg-Wilson fermions which have
much better chiral properties.

The corresponding pictures for mode 2 look similar to
Fig. 4. The width of the mode is, however, noticeably
larger than that of mode 1. Mode 3 serves as an example
for amode with low (ys), high I,, and an eigenvalue which
lies in the bulk of the spectrum. Although (ys) is small,
the (s) density has a region of large positive values right
next to a region where the density is large and negative.
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This suggests mode 3 might be an instanton—anti-instanton
molecule.

Modes related to instantons and calorons were recently
investigated in lattice QCD with dynamical fermions [17].
While the results below T, are consistent with expecta-
tions based on an instanton liquid picture, the interpre-
tation of the observations above T, appears to be less
straightforward.

To summarize, we have analyzed the localization
properties of quark eigenstates in quenched lattice QCD.
By concentrating on the low eigenvalues we could char-
acterize semiclassical properties of the gauge field con-
figurations without any cooling. (For investigations using
cooling, see, e.g., Refs. [18,19].) For temperatures above
T, we found isolated modes with definite handedness
which show all the properties of fermion states associated
with calorons, in particular localization in space but not
in time.
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for useful conversations.
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