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Calorons and Localization of Quark Eigenvectors in Lattice QCD
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We analyze the localization properties for eigenvectors of the Dirac operator in quenched lattice QCD
in the vicinity of the deconfinement phase transition. Studying the characteristic differences between th
Z3 sectors above the critical temperatureTc, we find indications for the presence of calorons.

DOI: 10.1103/PhysRevLett.87.042001 PACS numbers: 12.38.Gc, 11.15.Ha, 11.30.Rd
s
p
n
o

h
r
o
a
o
h
n
ir

d
th
l
ti
i

n
e

io
t
r

r
)
o

n

ry
ary
he

red
One of the most discussed topics in hadron physic
the chiral phase transition of QCD, and the microsco
processes connected with it. Many current and plan
experiments are at least partially motivated by the h
that they will shed some light on the issues involved.

In this Letter we study the localization properties of t
lattice Dirac operator in the neighborhood of the chi
phase transition. We are motivated by the fact that
of the most popular pictures of the phase transition rel
it to the properties of QCD instantons and anti-instant
(see, e.g., Ref. [1]). The origin of this connection is t
following observation: For each isolated instanton or a
instanton there exists a localized zero mode of the D
operator. For a liquid of instantons and anti-instanto
these zero modes should be perturbed to form a ban
small eigenvalues. At higher temperatures it is thought
instantons and anti-instantons may pair to form molecu
and that the associated modes will no longer have par
larly small eigenvalues, but instead become an inconsp
ous part of the bulk spectrum.

The Banks-Casher formula [2],

�q̄q� � 2
prDirac�0�

V
, (1)

relates the chiral condensate�q̄q� to rDirac�0�, the density
of Dirac eigenvalues at zero, evaluated in the (large) v
ume V . Thus we expect that if the instantons and an
instantons form a liquid, chiral symmetry will be broke
but that if they form instanton–anti-instanton molecul
chiral symmetry will be restored.

If this interpretation is correct, the chiral phase transit
should reflect itself also in a characteristic change of
localization properties of the lowest Dirac eigenvecto
This is the main motivation for our studies.

In addition, we are interested in comparing our lattice
sults with predictions from random matrix theory (RMT
Such a comparison allows us to distinguish generic fr
QCD-specific properties. Similar studies were perform
before in Ref. [3]. In this paper, however, the authors a
lyzed a specific instanton-liquid approximation to QC
while we study lattice QCD.

As usual, we simulate a finite-temperature system
working on a lattice withLt , Ls, whereLt �Ls� is the
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D

by

temporal (spatial) extent of the lattice. All bounda
conditions are periodic except for the temporal bound
conditions of the fermions which are antiperiodic. T
temperature is given byaT � 1�Lt with the lattice
spacinga. We fix Lt � 6 and varya (and henceT) by
changingb � 6�g2.

We work in the quenched approximation with stagge
fermions, i.e., with the Dirac operator

D �
4X

m�1

1
2a

am�x� �dy,x1m̂Um�x� 2 dy,x2m̂Uy
m� y�� ,

(2)

where am�x� � �21�x11···1xm21 and the Um are the link
variables. The eigenvalues of D come in pairs of 6il
with l real, so we can restrict ourselves to positive l in the
following. In the continuum limit this action corresponds
to four quark flavors. From now on we set a to 1.

Quenched QCD has an additional Z3 symmetry of the
gauge sector, which is spontaneously broken in the de-
confined phase [4]. In the confined phase the expectation
value of the Polyakov loop P is zero, whereas in the de-
confined phase jPj acquires an expectation value, and the
phase of P clusters around the values uP � arg�P� � 0,
62p�3. The fermion action does not share the Z3 symme-
try, so fermionic quantities can depend on the Z3 sector. It
was found in Ref. [5] that the chiral condensate computed
from the configurations with uP � 0 vanishes above Tc as
expected. For uP � 62p�3 it remains finite in a certain
temperature range above Tc. This behavior can be under-
stood in Nambu–Jona-Lasinio models [6,7] and in RMT
[8]. The point is that the boundary conditions of the Dirac
operator are not invariant under Z3 transformations, and
for uP � 62p�3 the new boundary conditions lead to a
decrease of the Dirac eigenvalues [8]. According to the
Banks-Casher relation, Eq. (1), this implies that the con-
densate will disappear only for larger temperatures, i.e.,
the transition temperature is higher for these sectors. For
phenomenological comparisons one should use the uP � 0
sector as this one is energetically favored for dynami-
cal fermions. (The sectors uP � 62p�3 are physically
equivalent to each other.) We refer to the uP � 0 sector
as the real sector and to the uP � 62p�3 sectors as the
complex sector.
© 2001 The American Physical Society 042001-1
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Large temperatures correspond to a small extension of
the lattice in the temporal direction. The periodic bound-
ary conditions for the gauge fields thus imply that the field
equations have solutions with nontrivial topology which
look rather like an instanton chain [9]. Such configura-
tions, called calorons, have been the topic of intense in-
vestigations [1].

The index theorem tells us that the continuum Dirac op-
erator has a chiral zero mode in a caloron field, so we will
search for calorons by looking at the chiral and localiza-
tion properties of the eigenvectors of the low-lying eigen-
values of D. To calculate the eigenvalues and eigenvectors
we used the Arnoldi method as implemented in Ref. [10].
This method allows us to choose the number of the lowest
eigenvalues and eigenvectors to be calculated.

In the continuum a zero mode has a definite chiral-
ity (� expectation value �g5�) of 61, while modes with
l fi 0 have �g5� � 0. Staggered fermions possess only a
restricted chiral symmetry, so in this case we expect �g5�
values between 21 and 1. In Fig. 1 we show a scatter plot
of �g5� against Dirac eigenvalue, for a temperature slightly
above Tc. We can see that in all sectors the data points
form clusters. There are some eigenmodes with very small
eigenvalue, and �g5� � 60.2, while the bulk of the eigen-
vectors have a larger l, and �g5� near zero. The modes
labeled 1 to 3 in Figs. 1 and 2 will be discussed below.

A large value of �g5� suggests that the corresponding
eigenvectors have a topological origin, in which case they
should be associated with specific localized states. This
interpretation is supported by the fact that these modes
are approximately fourfold degenerate as they should be
because of the flavor symmetry of staggered fermions in
the continuum limit. One of our main results is that these
states may be important for understanding the differences
between the Z3 sectors.

As a measure of the localization of our quark eigenvec-
tors c

a
l �x� (l is the Dirac eigenvalue, a a color index) we
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FIG. 1. �g5� vs l. The measurements are on a 123 3 6 lattice
at b � 6.10 for both sectors, uP � 0 and uP � 62p�3.
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use a gauge-invariant inverse participation ratio (IPR), de-
fined by

I2 	 V

P
x pl�x�2

�
P

x pl�x��2 , (3)

where V is the number of lattice sites and pl�x� is the
gauge-invariant probability density

pl�x� �
NcX

a�1

jca
l �x�j2. (4)

For a completely delocalized state [all pl�x� the same] one
finds I2 � 1, whereas a state localized on a single lattice
site [only one nonzero pl�x�] would have I2 � V . (The
staggered fermions’ chiral symmetry means that, in fact,
an eigenstate can never be completely localized, since all
eigenstates must have half their probability on even sites,
and half on odd.) I2 is also a measure of the standard
deviation of pl�x�,

I2 2 1 �

P
x�pl�x� 2 pl�2

Vp2
l

. (5)

Chiral RMT predicts that the average value of I2 is

�I2� �
�Nc 1 1�V
NcV 1 2

V!`
! 1 1

1
Nc

for Nc $ 3 . (6)

To elucidate the relevance of the IPR let us note that in
condensed matter physics the size of the IPR decides, e.g.,
whether a disordered mesoscopic sample is a metal (I2
close to the RMT prediction) or an insulator (I2 large).

We have investigated the behavior of I2 on finite tem-
perature lattices, on both sides of the deconfinement phase
transition, which lies at b � 5.89 for Lt � 6 in the ther-
modynamic limit [11].

Slightly above Tc the localization properties show char-
acteristic differences for the different Z3 sectors. In the
real sector the effect of localization is strongly pronounced
while it is nearly absent in the uP � 62p�3 sectors. This
is illustrated in Figs. 2 and 3 in which we divided the en-
sembles of gauge configurations into configurations with
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FIG. 2. A scatter plot of the localization vs chirality.
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FIG. 3. From top to bottom, the average IPR for temperatures
below, slightly above, and well above the chiral phase transition
plotted separately for the Z3 sector with uP � 0 and the Z3
sectors with uP � 62p�3. The average was performed for the
1st, 2nd, . . . , 20th eigenvalue of each gauge field configuration.
The dashed line is the RMT prediction, 4�3.

2p�3 # uP , p�3 (real sector) and all other configura-
tions (complex sector). A difference between localization
in the different sectors tells us immediately that the eigen-
states must be extended in the time direction, because an
eigenstate localized in time would be unaffected by a Z3
transformation. Naturally, we do not expect any differ-
ences in the localization properties for the different sectors
when T , Tc.

We studied these characteristic differences for high tem-
peratures in more detail and found features which suggest
that they can be attributed to the effects of calorons, as we
shall now explain.

Harrington and Shepard found exact SU(2) instanton so-
lutions at finite temperature [9], which they called calorons
042001-3
(for a review see Ref. [12]). Their solution consists of a
one-dimensional chain of instantons, with a periodic repeat
at a distance 1�T. There is a single physically relevant pa-
rameter, RT , which gives the instanton radius R, relative to
the scale set by the temperature. When RT ø 1 the solu-
tion looks like an isolated instanton, but when RT 
 1 fi-
nite temperature effects become significant. This instanton
chain satisfies the ’ t Hooft ansatz [13], so the techniques
described in Ref. [14] can be used to find the fermionic
zero modes [15]. For small RT these look like the zero
modes of an isolated instanton, but as RT increases, the
modes become extended in time, though they remain local-
ized in space. These SU(2) solutions can easily be embed-
ded in SU(3), leading to solutions which correspond to the
uP � 0 sector. To investigate the other sectors, we need
solutions where the timelike Polyakov loop has a nonzero
phase at spacelike infinity. We can construct such solu-
tions either by adding a constant A4 background field with
a color that commutes with the SU(2) subgroup contain-
ing the caloron, or by choosing the fermion field boundary
condition appropriately. In either case the fermionic zero
modes are readily constructed. One can also find pure
SU(2) solutions with a Polyakov loop background [16].
It would be interesting to study the relationship between
these solutions and the solutions found by embedding the
Harrington-Shepard solution in SU(3).

The localization of the embedded caloron’s fermion zero
mode depends heavily on the Z3 sector. Asymptotically the
modes fall off like

jcj2 ~ exp�22�p 2 juP j�rT��r2, (7)

where r is the three-dimensional distance from the caloron
axis. (At uP � 0, this agrees with the behavior given in
Ref. [12].) This is unlike the case of a single instanton,
which has jcj2 which drops off like a power of r. We
see from Eq. (7) that the correlation length for the zero
mode is smallest in the real sector �uP � 0�, and that the
complex Z3 sectors �uP � 62p�3� have modes in which
the radius is about 3 times greater, and so they occupy a
much larger volume. It is thus tempting to assume that the
strong difference between the localization properties in the
Z3 sectors is due to the fact that our lattice configurations
contain calorons. If so, the localization in four dimensions
should show the characteristic stringlike pattern discussed
above.

In Fig. 4 the localization itself and the local density
of the expectation value of g5 are shown for a highly
localized state in the uP � 0 sector (mode 1 of Figs. 1
and 2). To plot the complete four-dimensional lattice we
have introduced the two coordinates i � x 1 12t and j �
y 1 12z with the Euclidean lattice coordinates x, y, z �
0, 1, 2, . . . , 11 and t � 0, . . . , 5. This coordinate system
represents the lattice as a 6 3 12 array of x-y slices, which
generates the approximately periodic structure visible in
the plot. From the upper plot, we see that the state is indeed
042001-3
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FIG. 4. A “caloron” state (mode 1 of Figs. 1 and 2) on a
123 3 6 lattice for b � 6.1 in the uP � 0 sector. We have
introduced the coordinates i � x 1 12t and j � y 1 12z with
the lattice coordinates x, y, z � 0, 1, . . . , 11 and t � 0, . . . , 5.
The gauge-invariant density is plotted above, the expectation
value of g5 below. Both show localization in space but not in
time.

spatially localized, but extended in time. The lower plot
demonstrates that the eigenstate in question is an approxi-
mate chiral eigenstate. A continuum caloron would pos-
sess an exact chiral eigenstate. Unfortunately, staggered
fermions exhibit only part of the continuum chiral sym-
metry, which is the reason why we do not find perfect g5
eigenstates. It would therefore be very interesting to repeat
these studies with Ginsparg-Wilson fermions which have
much better chiral properties.

The corresponding pictures for mode 2 look similar to
Fig. 4. The width of the mode is, however, noticeably
larger than that of mode 1. Mode 3 serves as an example
for a mode with low �g5�, high I2, and an eigenvalue which
lies in the bulk of the spectrum. Although �g5� is small,
the �g5� density has a region of large positive values right
next to a region where the density is large and negative.
042001-4
This suggests mode 3 might be an instanton–anti-instanton
molecule.

Modes related to instantons and calorons were recently
investigated in lattice QCD with dynamical fermions [17].
While the results below Tc are consistent with expecta-
tions based on an instanton liquid picture, the interpre-
tation of the observations above Tc appears to be less
straightforward.

To summarize, we have analyzed the localization
properties of quark eigenstates in quenched lattice QCD.
By concentrating on the low eigenvalues we could char-
acterize semiclassical properties of the gauge field con-
figurations without any cooling. (For investigations using
cooling, see, e.g., Refs. [18,19].) For temperatures above
Tc we found isolated modes with definite handedness
which show all the properties of fermion states associated
with calorons, in particular localization in space but not
in time.
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[15] N. Bilić, Phys. Lett. 97B, 107 (1980).
[16] T. C. Kraan and P. van Baal, Nucl. Phys. B533, 627 (1998);

Phys. Lett. B 428, 268 (1998); K. Y. Lee and C. Lu, Phys.
Rev. D 58, 025011 (1998).

[17] Ph. de Forcrand et al., Nucl. Phys. B (Proc. Suppl.) 73,
578 (1999); hep-lat/9802017.

[18] M. L. Laursen and G. Schierholz, Z. Phys. C 38, 501
(1988); E.-M. Ilgenfritz et al., hep-lat/0011051.

[19] S. Hands, Nucl. Phys. B329, 205 (1990).
042001-4


