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We report the first observation of the quantum Zeno and anti-Zeno effects in an unstable system. Cold
sodium atoms are trapped in a far-detuned standing wave of light that is accelerated for a controlled
duration. For a large acceleration the atoms can escape the trapping potential via tunneling. Initially the
number of trapped atoms shows strong nonexponential decay features, evolving into the characteristic
exponential decay behavior. We repeatedly measure the number of atoms remaining trapped during the
initial period of nonexponential decay. Depending on the frequency of measurements we observe a decay
that is suppressed or enhanced as compared to the unperturbed system.
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Unstable quantum systems are predicted to exhibit
a short time deviation from the exponential decay law
[1–3]. This universal phenomenon led to the prediction
that frequent measurements during this nonexponential
period could inhibit the decay of the system, the so-called
“quantum Zeno effect” [4–6]. More recently it was
predicted that an enhancement of decay due to frequent
measurements could be observed under somewhat more
general conditions, which was named the “anti-Zeno ef-
fect” [7–10]. We report here the first observation of both
the Zeno and anti-Zeno effects by repeated measurements
during the nonexponential period of an unstable quantum
system.

Our experiment consists of ultracold sodium atoms in an
accelerated standing wave of light which creates an optical
potential of the form V0 cos�2kLx 2 kLat2�, where V0 is
the amplitude of the potential, kL is the wave number of
the light forming the potential, x is the position in the labo-
ratory frame, a is the acceleration, and t is time. Trans-
formation to the frame accelerated with the potential �x0�
yields the form V0 cos�2kLx0� 2 max0 in which a constant
inertial force on the atom with mass m is apparent. Classi-
cally, for a given amplitude V0 and small enough accelera-
tion, a atoms can be trapped inside this tilted “washboard
potential” and be accelerated along with it. Quantum me-
chanically, an atom which is classically bound can escape
from this trapped state into the continuum via tunneling
[11–13]. The system is therefore unstable, and the de-
cay would be expected to follow the universal exponential
decay law. It was shown, however, that deviations from
exponential behavior should occur for short times, owing
to the initial reversibility of the decay process [1–3]. Our
system is the only one in which these predicted deviations
have been observed [14]. Improvements to our previous
setup have now allowed us to explore parameter regimes
for which much stronger deviations from the exponential
behavior occur. This has enabled us to study the effect of
repeated measurements on the decay of the system [4–6].
Even though measurement-induced suppression of the dy-
namics of a two-state driven system has been observed
[15,16], no such effect was measured on an unstable sys-
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tem. Frequent measurements during the decay of an un-
stable system are predicted to reduce or enhance the decay
rate, depending on the measurement interval.

The experimental setup resembles the one used previ-
ously to study deviations from exponential decay and will
be described only briefly. Several steps were necessary
to prepare the initial condition. We started by cooling
and trapping approximately 3 3 105 sodium atoms in a
magneto-optical trap, followed by a stage of mo-
lasses cooling [17]. After this stage the distribution
had a typical Gaussian width of sx � 0.3 mm in
position and sy � 6yrec in velocity, where yrec �
3 cm�s is the single-photon recoil velocity. After switch-
ing off the cooling and trapping fields the interaction
beams were turned on. The interaction potential was a
standing wave created by two linearly polarized counter-
propagating laser beams with parallel polarization vectors.
The light was far detuned from the �3S1�2� $ �3P3�2�
transition in order to avoid electronic excitation and the re-
sulting spontaneous emission. Detunings typically ranged
from 40 to 60 GHz and the power in each of the beams was
adjusted up to 150 mW. The beams were spatially filtered
and focused to a beam waist of 1.8 mm at the position of
the atomic cloud. Because of the large initial momentum
spread of the atomic cloud, switching on the interaction
potential populated several of the lower energy bands.
Atoms projected into the lowest band are trapped within
the potential wells, whereas atoms in the second band are
only partially trapped. Atoms in even higher bands have
energies well above the potential and hence are effectively
free. To empty all but the lowest band, the standing
wave was then accelerated to a velocity of y0 � 35yrec by
linearly chirping the frequency of one of the counterpropa-
gating beams while keeping the frequency of the other
beam fixed. As discussed in our previous work [11–13],
accelerating the potential leads to a loss of population in
the lower bands due to tunneling of atoms into higher
untrapped bands. The transport acceleration atrans was
chosen to maximize tunneling out of the second band
while minimizing losses from the first trapped band. This
ensured that, after the initial acceleration, only the first
© 2001 The American Physical Society 040402-1
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band still contained a significant number of atoms. After
reaching the velocity y0 the acceleration was suddenly
increased to a value atunnel, where appreciable tunneling
out of the first band occurred. This large acceleration was
maintained for a period of time ttunnel after which time
the frequency chirping continued again at the decreased
rate corresponding to atrans. This separated in momentum
space the atoms that were still trapped in the lowest band
from those in the higher bands. After reaching a final
velocity of 75yrec the interaction beams were switched off
suddenly. A diagram of the velocity profile versus time is
shown in Fig. 1(a).

In the detection phase we determined the number of
atoms that were initially trapped and what fraction re-
mained in the first band after the tunneling sequence.
After an atom tunneled out of the potential during the se-
quence, it would maintain the velocity that it had at the
moment of tunneling. Turning off the light beams al-
lowed the atoms to expand freely. During this period of
ballistic expansion each atom moved a distance propor-
tional to its velocity. Because of the difference in final
velocity, trapped and tunneled atoms separated and could
be spatially resolved. For imaging purposes the cooling
beams were turned back on with no magnetic field gradi-
ent present. This temporarily restricted movement of the
atoms in a “freezing molasses,” while the fluorescence was
imaged onto a charge-coupled-device camera. Regions of
the two-dimensional image were then integrated to obtain
the desired fraction of remaining atoms over the number
of initially trapped atoms. A typical integrated distribution
is shown in Fig. 1(b). For this trace, about one-third of
the initially trapped atoms have tunneled out of the well
during the fast acceleration duration.

We observed the decay of the unstable system by repeat-
ing the experiment for various tunneling durations ttunnel,
holding the other parameters of the sequence fixed. The
focus of this work, however, was the effect of measure-
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FIG. 1. Part (a) shows a diagram of the acceleration sequence.
Part (b) shows a typical integrated spatial distribution of atoms
after the time of ballistic expansion. The large peak on the right
is the part of the atomic cloud that was not trapped during the
initial acceleration. The center peak indicates the atoms that
tunneled out of the optical potential during the fast acceleration
period. The leftmost peak corresponds to atoms that remained
trapped during the entire sequence. The survival probability is
the area under the left peak normalized by the sum of the areas
under the left and center peak.
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ments on the system decay rate. The quantity to be mea-
sured was the number of atoms remaining trapped in the
potential during the tunneling segment. This measurement
could be realized by suddenly interrupting the tunneling
duration by a period of reduced acceleration ainterr, as in-
dicated in Fig. 2(a). During this interruption, tunneling
was negligible and the atoms were therefore transported to
a higher velocity without being lost out of the well. This
separation in velocity space enabled us to distinguish the
remaining atoms from the ones having tunneled out up to
the point of interruption, as can be seen in Fig. 2(b). By
switching the acceleration back to atunnel the system was
then returned to its unstable state. The measurement of the
number of atoms defined a new initial state, with the re-
maining number of atoms as the initial condition. The sys-
tem must therefore start the evolution again with the same
nonexponential decay features. The requirements for this
interruption section were very similar to those during the
transport section, namely the largest possible acceleration
while maintaining negligible losses for atoms in the first
band. Hence ainterr was chosen to be the same as atrans.

Figure 3 shows the dramatic effect of frequent measure-
ments on the decay behavior. The hollow squares indicate
the decay curve without interruption. As pointed out by
Misra and Sudarshan [4], one can take advantage of the
slow initial decay in order to inhibit the decay altogether by
frequently measuring the system at very short time inter-
vals. They named this suppression of decay the quantum
Zeno effect. The solid circles in Fig. 3 depict the mea-
surement of the survival probability in which, after each
tunneling segment of 1 ms, an interruption of 50 ms dura-
tion was inserted. Only the short tunneling segments con-
tribute to the total tunneling time. The survival probability
clearly shows a much slower decay than the correspond-
ing system measured without interruption. Care was taken
to include the limited time response of the experimental
setup into the analysis of the data. The response time
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FIG. 2. Part (a) shows a diagram of the interrupted acceleration
sequence. The total tunneling time is the sum of all the tunneling
segments. Part (b) shows a typical integrated spatial distribution
of atoms after the time of ballistic expansion. The peaks can
be identified as in Fig. 1. However, the area containing the
tunneled fraction of the atoms is now composed of two peaks.
Atoms that left the well during the first tunneling segment are
offset in velocity from the ones having left during the second
period of tunneling. The amount of separation is equal to the
velocity increase of the well during the interruption segment.
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FIG. 3. Probability of survival in the accelerated potential
as a function of duration of the tunneling acceleration. The
hollow squares show the noninterrupted sequence, and the solid
circles show the sequence with interruptions of 50 ms duration
every 1 ms. The error bars denote the error of the mean. The
data have been normalized to unity at ttunnel � 0 in order to
compare with the simulations. The solid lines are quantum
mechanical simulations of the experimental sequence with no
adjustable parameters. For these data the parameters were
atunnel � 15 000 m�s2, ainterr � 2000 m�s2, tinterr � 50 ms,
and V0�h � 91 kHz, where h is Planck’s constant.

was limited by electronic and electro-optic devices used
in the experiment. The frequency response was measured
and the resulting transfer function was used to calibrate
the response of the optical potential to a desired change
in acceleration. This ensured that only sections were in-
cluded for which tunneling was substantial and established
a lower bound for the actual tunneling duration. This ef-
fect was taken into account for the curves in Fig. 3. Also
indicated as solid lines are quantum mechanical simula-
tions of the decay by numerically integrating Schrödinger’s
equation for the experimental sequence and determining
the survival probability numerically. The simulations con-
tained no adjustable parameters and are in good agreement
with the experimental data. We attribute the seemingly
larger decay rate for the Zeno experiment, as compared
to the simulation, to the underestimate of the actual tun-
neling time. This suggests that in reality the decay might
be even slower than indicated by the experimental data
points.

The shape of the uninterrupted decay curve suggests yet
another option for changing the decay behavior of an unsta-
ble system. After an initial period of slow decay, the curve
shows a steep drop as part of an oscillatory feature, which
for longer time damps away to show the well-known ex-
ponential decay. If the system was to be interrupted right
after the steep drop, one would expect an overall decay
that is faster than the uninterrupted decay [9]. In contrast
to the slower decay for the Zeno effect this prediction was
named the anti-Zeno effect. The solid circles in Fig. 4
show such a decay sequence, where after every 5 ms of
tunneling the decay was interrupted by a slow acceleration
segment. As in the Zeno case, these interruption segments
force the system to repeat the initial nonexponential de-
040402-3
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FIG. 4. Survival probability as a function of duration of the
tunneling acceleration. The hollow squares show the noninter-
rupted sequence, and the solid circles show the sequence with
interruptions of 40 ms duration every 5 ms. The error bars de-
note the error of the mean. The experimental data points have
been connected by solid lines for clarity. For these data the
parameters were: atunnel � 15 000 m�s2, ainterr � 2800 m�s2,
tinterr � 40 ms, and V0�h � 116 kHz.

cay behavior after every measurement. Here, however, the
tunneling segments between the measurements are chosen
longer in order to include the periods exhibiting fast de-
cay. The overall decay is much faster than for the uninter-
rupted case, indicated by the hollow squares in the same
figure.

The key to observing the Zeno and anti-Zeno effects
is the ability to measure the state of the system in order
to repeatedly redefine a new initial state. In our case the
measurement is done by separating in momentum space
the atoms still left in the unstable state from the ones that
decayed into the reservoir. In order to distinguish the two
classes of atoms, they must have a separation of at least
the size of the momentum distribution of the unstable state,
which in our case is the width of the first Brillouin zone
of dp � 2myrec. The time it takes for an atom to be ac-
celerated in velocity by this amount is the Bloch period
tb � 2yrec�ainterr, assuming an acceleration of ainterr. An
interruption shorter than this time will not resolve the tun-
neled atoms from those still trapped in the potential and
therefore results in an incomplete measurement of the atom
number. To investigate the effect of the interruption du-
ration we repeated a sequence to measure the anti-Zeno
effect for varying interruption durations while holding all
other parameters constant. Figure 5 displays the results of
this measurement, interrupting the decay every 5 ms with
an acceleration of ainterr of 2000 m�s2. The hollow squares
show the uninterrupted decay sequence as a reference. For
an interruption duration smaller than the Bloch period of
30 ms the measurement of the atom number is incomplete
and has little or no effect. For a duration longer than the
Bloch period the effect saturates and results in a complete
restart of the decay behavior after every interruption. Even
though this method of interruption is not an instantaneous
measurement of the state of the unstable system, we can
040402-3
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FIG. 5. Survival probability as a function of duration of the
tunneling acceleration. The hollow squares show the noninter-
rupted sequence, and the other symbols indicate the sequence
with a finite interruption duration after every 5 ms of tunnel-
ing. The error bars denote the error of the mean. A further
than indicated increase of the interruption duration does not
result in a further change of the decay behavior. The experi-
mental data points have been connected by solid lines for clar-
ity. For these data the parameters were atunnel � 15 000 m�s2,
ainterr � 2000 m�s2, and V0�h � 91 kHz.

still accomplish the task of redefining the initial state by
first switching the system from an unstable to a stable one,
then in a finite time perform the measurement and finally
switching the system back again to unstable.
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