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We introduce a classification of mixed three-qubit states, in which we define the classes of separable,
biseparable, W , and Greenberger-Horne-Zeilinger states. These classes are successively embedded into
each other. We show that contrary to pure W -type states, the mixed W class is not of measure zero.
We construct witness operators that detect the class of a mixed state. We discuss the conjecture that all
entangled states with positive partial transpose (PPTES) belong to the W class. Finally, we present a
new family of PPTES “edge” states with maximal ranks.
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The rapidly increasing interest in quantum information
processing has motivated the detailed study of entangle-
ment. Whereas entanglement of pure bipartite systems is
well understood, the classification of mixed states accord-
ing to the degree and character of their entanglement is still
a matter of intensive research (see [1]). It was soon real-
ized that the entanglement of pure tripartite quantum states
is not a trivial extension of the entanglement of bipartite
systems [2,3]. Recently, the first results concerning the en-
tanglement of pure tripartite systems have been achieved
[4–6]. There, the main goal has been to generalize the con-
cept of the Schmidt decomposition to three-party systems
[4,5], and to distinguish classes of locally inequivalent
states [6]. The knowledge of mixed tripartite entangle-
ment is much less advanced (see, however, [7–9]).

In this Letter we introduce a classification of the whole
space of mixed three-qubit states into different entangle-
ment classes. We provide a method to determine to which
class a given state belongs (tripartite witnesses). We also
discuss the characterization of entangled states that are posi-
tive under partial transposition (PPTES). Finally, we in-
troduce a new family of PPTES for mixed tripartite qubits.

Our proposal to classify mixed tripartite-qubit states is
done by specifying compact convex subsets of the space of
all states, which are embedded into each other. This idea
vaguely resembles the classification of bipartite systems
by their Schmidt number [9–11]. However, as shown later
our classification does not follow the Schmidt number [9].
Also in this respect, entanglement of tripartite systems dif-
fers genuinely from the one of bipartite quantum systems.

Before presenting our results concerning mixed states,
we briefly review some of the recent results on pure three-
qubit states. Any three-qubit vector (pure state) can be
written as

jcGHZ� � l0j000� 1 l1eiu j100� 1 l2j101�
1 l3j110� 1 l4j111� , (1)

where li $ 0,
P

i l
2
i � 1, u [ �0, p�, and �j0�, j1�� de-

notes an orthonormal basis in Alice’s, Bob’s, and Charlie’s
spaces, respectively [4]. Apart from separable and bisepa-
rable pure states, there exist also two different types
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of locally inequivalent entangled vectors: the so-called
Greenberger-Horne-Zeilinger (GHZ) type [2] and W type
[6]. Vectors belonging to GHZ and W types cannot be
transformed into each other by local invertible and, in
particular, local unitary [12] operations. Generically, a
vector described by Eq. (1) is of the GHZ type, while W
vectors can be written as

jcW � � l0j000� 1 l1j100� 1 l2j101� 1 l3j110� . (2)

W vectors form a set of measure zero among all pure states
[6]. Also, given a W vector one can always find a GHZ
vector as close to it as desired by adding an infinitesimal
l4 term to the right-hand side of Eq. (2). Furthermore,
the so-called tangle, t, introduced in [13], can be used to
detect the type, since t�jcW �� � 0 [6].

Mixed states of three-qubit systems can be classified
generalizing the classification of pure states. To this aim
we define the following (see Fig. 1): (i) the class S of sepa-
rable states, i.e., those that can be expressed as a convex
sum of projectors onto product vectors; (ii) the class B of
biseparable states, i.e., those that can be expressed as a con-
vex sum of projectors onto product and bipartite entangled
vectors (A-BC, B-AC, and C-AB); (iii) the class W of W
states, i.e., those that can be expressed as a convex sum
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FIG. 1. Schematic structure of the set of all three-qubit states.
S: separable class; B: biseparable class (convex hull of bisepa-
rable states with respect to any partition); W class and GHZ
class.
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of projectors onto product, biseparable, and W -type vec-
tors; (iv) the class GHZ of GHZ states, i.e., the set of all
physical states. All these sets are convex and compact,
and satisfy S , B , W , GHZ. States in S are not en-
tangled. No genuine three-party entanglement is needed
to prepare entangled states in the subset BnS. The forma-
tion of entangled states in WnB requires W -type vectors
with three-party entanglement, but zero tangle, which is
an entanglement monotone decreasing under local opera-
tions and classical communication [6]. Finally, the class
GHZ contains all types of entanglement, and, in particu-
lar, GHZ-type vectors are needed to prepare states from
GHZnW . The introduced classes are invariant under lo-
cal unitary or invertible nonunitary operations, while local
POVM’s can transform states only from a “higher” to a
“lower” class.

Notice that since GHZ vectors can be expressed as the
sum of only two product vectors, i.e., jGHZ� � �j000� 1

j111���
p

2, whereas the minimum number of product
terms forming a W vector is three [4,6], as in the state
jW� � �j100� 1 j010� 1 j001���

p
3, our scheme may

seem somehow counterintuitive. Indeed, for bipartite
systems, states with lower Schmidt number, i.e., lower
number of product terms in the Schmidt decomposition,
are embedded into the set of states with higher Schmidt
number [10]. One is tempted to extend this classification
to tripartite systems as S , B , GHZ , W , where now
W is the set of all states. However, such generalization is
evidently wrong, because the set of GHZ states in such
classification cannot be closed.

Having established the structure of the set of mixed
three-qubit states, we show how to determine to which
class a given state r belongs. To this aim, we use the
approach developed previously in the construction and op-
timization of witness operators [11,14,15].

We denote the range of r by R�r�, its rank by r�r�, its
kernel by K�r�, and the dimension of K�r� by k�r�. Fol-
lowing the approach of the best separable approximation
[16], one can decompose any state r as a convex combi-
nation of a W -class state and a remainder d,

r � lWrW 1 �1 2 lW �d , (3)

where 0 # lW # 1, and R�d� does not contain any W vec-
tor. Maximization of lW leads to the best W approxima-
tion of r. Notice that only for r belonging to the GHZnW
class, this decomposition is nontrivial, i.e., lW fi 1. Also,
r�d� � 1, since any subspace spanned by two linearly in-
dependent GHZ vectors contains at least one pure state
with zero tangle. Therefore, any W approximation must
have the form

r � lWrW 1 �1 2 lW � jcGHZ� 	cGHZj . (4)

Similarly, one can express r in the best biseparable ap-
proximation as

r � lBrB 1 �1 2 lB�d , (5)

where now R�d� must not contain any biseparable states,
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i.e., r�d� , 4, since any N-dimensional subspace of the
2 3 N space contains at least one product vector [17].

We use the above decompositions to construct opera-
tors that detect the desired subset (see [15]). In analogy
to entanglement witnesses and Schmidt witnesses we term
these operators tripartite witnesses. The existence of wit-
ness operators is a consequence of the Hahn-Banach theo-
rem, which states that a point outside a convex compact
set is separated from that set by a hyperplane. The equa-
tion Tr�W r� � 0 describes such a hyperplane, and one
calls W a witness operator. For example, in our setting, a
W witness is an operator WW such that Tr�WWrB� $ 0
holds ; rB [ B, but for which there exists a rW [ WnB
such that Tr�WW rW � , 0.

Any GHZ witness (W witness) has the canonical form
W � Q 2 e', where Q is a positive operator which has
no W-type (B-type) vectors in its kernel; thus k�Q� � 1
[k�Q� , 4] [11,15]. An example of a GHZ witness is

WGHZ �
3
4
' 2 PGHZ , (6)

where PGHZ is the projector onto jGHZ�. The value 3�4
corresponds to the maximal squared overlap between
jGHZ� and a W vector. This construction guarantees
that Tr�WGHZrW � $ 0 for any W state, and since
Tr�WGHZPGHZ� , 0, there is a GHZnW state which is
detected by WGHZ. The maximal overlap is obtained
as follows: due to the symmetry of jGHZ� we need to
consider only W vectors that are symmetric under the
exchange of any of the three qubits [18]. Therefore, we
have to consider all local trilateral rotations of jcW � �
k0j000� 1 k1�j100� 1 j010� 1 j001��, where k0, k1 are
real and k

2
0 1 3k

2
1 � 1. Because of the symmetry, such

rotations can be parametrized for all parties as j0� !
aj0� 1 bj1�, j1� ! b�j0� 2 a�j1�, with ja2j 1 jb2j �
1. Thus, the overlap 	GHZ jcW � is a function of six
parameters with two constraints, and can be maximized
using Lagrange multipliers. An optimal choice of parame-
ters is k0 � 0, k1 � 1�

p
3, and b � 2a � 1�

p
2. This

leads to j	GHZ jcW �j2max � 3�4.
Analogously, we can construct a W witness as

WW1 �
2
3
' 2 PW , (7)

where PW is now the projector onto a vector jW�, and 2�3
corresponds to the maximal squared overlap between jW�
and a B vector. Another example of a W witness is

WW2
�

1
2
' 2 PGHZ , (8)

where now 1�2 is the maximal squared overlap between
jGHZ� and a B type vector [19]. The W vector that has
maximal overlap with jGHZ� is detected by WW2 .

The tripartite witness WW2 allows one to prove that the
class of mixed WnB states is not of measure zero: consider
the family of states in C 2 ≠ C 2 ≠ C 2 given by the convex
040401-2
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sum of the identity and a projector onto a W -type vector
that maximizes the squared overlap with jGHZ�,

r �
1 2 p

8
' 1 pPW . (9)

Obviously, the states (9) belong at most to W . The
range for the parameter p, in which WW2 detects r, i.e.,
Tr�WW2

r� , 0, is found to be 3�5 , p # 1, and is
bigger than the one found by using WW1 . Taking any p
which has a finite distance to the border of this interval,
i.e., p 2 3�5 . D and 1 2 p . D, it is always possible
to find a finite region around r which still belongs to the
WnB class. This can be seen by considering

r̃ � �1 2 e�
∑

1 2 p
8
' 1 pPW

∏
1 es , (10)

where s is an arbitrary density matrix, which covers all
directions of possible deviations from r in the operator
space. In the worst case s is orthogonal to PGHZ,
so that Tr�PGHZs� � 0, and therefore Tr�WW2 r̃� �
�1 2 e� Tr�WW2r� 1 e�2. As long as the relation
e , �5p 2 3���5p 1 1� holds, the corresponding state
r̃ is still detected by WW2

. Moreover, one can also find
a finite e0 such that if e , e0, then r̃ is in the W class.
The bound e0 is obtained, for instance, by demanding
that �1 2 e0� �1 2 p�'�8 1 e0s is biseparable. The
intersection of the two intervals gives a finite range for e
where the state r̃ is in the WnB class. This proves that
the set of mixed WnB states contains a ball, i.e., is not of
measure zero.

We discuss now some possible consequences of our re-
sults for PPTES of three qubits, for which the partial trans-
poses rTA , rTB , and rTC are positive. Any of these states
can be decomposed as

r � lSrS 1 �1 2 lS�d , (11)

where rS is a separable state and d is an edge state [20].
We conjecture that PPTES cannot belong to the GHZnW
class; i.e., they are at most in the W class. This conjecture
is true for states that have edge states with low ranks in
the above decomposition. It was shown in [17] that for
bipartite systems in C 2 ≠ C N , the rank of PPTES must
be larger than N , and if r�r� # N and rTA $ 0, then the
state r is separable. Thus, any PPTES of three qubits
with r�r� # 4 is biseparable with respect to any partition;
examples of such states are the UPB states from Ref. [7].

For the case of higher ranks we can give some support
only for our conjecture. We proceed as in [11], and
observe first that it suffices to prove the conjecture for the
edge states. For these states, the sum of ranks satisfies
r�d� 1 r�dTA� 1 r�dTB� 1 r�dTC � # 28 [20]. Any PPT
entangled state can be detected only by a nondecompos-
able entanglement witness, which in the case of tripartite
systems has the canonical form Wnd � Wd 2 e'

where Wd � P 1
P

Q
TX
X is a decomposable operator
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with P, QX $ 0, R�P� � K�d�, R�QX � � K�dTX � for
some edge state d, and X � A, B, C [20]. We restrict
ourselves to edge states with the maximal sum of
ranks, i.e., states d with �r�d�, r�dTA�, r�dTB�, r�dTC �� �
�8, 8, 7, 5�, �8, 8, 6, 6�, �8, 7, 7, 6�, �7, 7, 7, 7� and permuta-
tions. Indeed, if the conjecture is true for these states, it
will be true for all edge states, and thus for all PPTES,
since the edge states with maximal sum of ranks are dense
in the set of all edge states [11]. We conjecture that for
the case of edge states with maximal sum of ranks it
is always possible to find a pure W -type vector, jfW�,
such that for any nondecomposable witness Wnd of d,
	fW jWd jfW� # 0, so that 	fWjWnd jfW� , 0. That
means Wnd cannot be a GHZ witness, so the edge state
d belongs to the W class. If this holds for any d it implies
that all PPTES belong to the W class.

Any W vector can be obtained by local invertible opera-
tions applied to jW�, i.e., can be written as

jfW� � aAje2, f1, g1� 1 aBje1, f2, g1� 1 aCje1, f1, g2� .
(12)

We denote

jFA� � je�
2, f1, g1� ,

jCA� � aBje
�
1, f2,g1� 1 aCje

�
1, f1, g2� ,

jFB� � je1, f�
2 , g1� ,

jCB� � aAje2, f�
1 , g1� 1 aCje1, f�

1 , g2� ,
(13)

jFC� � je1, f1, g�
2� ,

jCC� � aAje2, f1, g�
1� 1 aBje1, f2,g�

1� .

In order to fulfill the condition 	fW jWd jfW� # 0 we
demand that QX jFX � � 0; PjfW � � 0, and QX jCX � � 0
for X � A, B, C. The latter four conditions form four
linear homogeneous equations for the aX ’s, whose solu-
tions exist if two 3 3 3 determinants vanish. Together
with the first three conditions this gives at most five
equations in the case r�d� , 8, and six equations in the
worst case r�d� � 8, for the six complex parameters
characterizing jei�, j fi�, and jgi�, with i � 1, 2. For
r�d� , 8 [r�d� � 8] one expects here a one complex
parameter (finite, but large) family of solutions. At the
same time 	fWjWd jfW� � 2 Re

P
X aX 	C�X

X jQ
TX
X jF

�X
X �,

(where jF�X � denotes partial complex conjugation with
respect to X), i.e., is a Hermitian form of aX ’s, whose
diagonal elements vanish, since jCX� does not depend
on aX . Employing the freedom of choosing the solu-
tions from the family, one expects to find at least one
with 	fWjWd jfW� # 0. In this way we obtain the W
vector we were looking for. For the cases �6, 8, 8, 6�
and �5, 8, 8, 7�, a similar argument indeed shows that
there should exist a biseparable state, jcB�, such that
	cBjWnd jcB� , 0. Note that the above method of search-
ing jcW � (jcB�) for a given d, if successful, provides a
sufficient condition for d to belong to the W class (B
class).
040401-3
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Finally, we present an example for a PPTES entangled
edge state with ranks �7, 7, 7, 7�. We introduce

r �
1
n

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 1

c 0 0 0

0 0 0 0 0 1
b 0 0

0 0 0 0 0 0 1
a 0

1 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

(14)

with a, b, c . 0 and n � 2 1 a 1 1�a 1 b 1 1�b 1

c 1 1�c. The basis is �000, 001, 010, 011, 100, 101, 110,
111�. This density matrix has a positive partial trans-
pose with respect to each subsystem. One sees imme-
diately that r�r� � r�rTA� � r�rTB � � r�rTAB � � 7. In
order to check that r is a PPT entangled edge state, one
has to prove that it is impossible to find a product vector
jf� [ R�r�, such that at the same time jf�X � [ R�rTX �
for X � A, B, C. This, indeed, is not possible, as one read-
ily concludes by looking at the kernels directly: one can-
not find a product vector jf� that is orthogonal to j000� 2

j111�, whereas at the same time jf�A��j011� 2 cj100�,
jf�B��j010� 2 bj101�, and jf�C��j001� 2 aj110�, un-
less the condition ab � c is fulfilled. Thus, for generic
a, b, c we have found a family of bound PPT entangled
edge states of three qubits with maximal sum of ranks. By
direct inspection we observe that r fulfills our conjecture,
and is biseparable with respect to any partition. It can be
written, e.g., as a sum of separable projectors and a B state
acting in the 2 3 2 subspace spanned by Alice’s space and
the vectors j00� and j11� in Bob’s-Charlie’s space.

To summarize, we show that the set of density matrices
for three qubits has an “onion” structure (see Fig. 1) and
contains convex compact subsets of states belonging to the
separable S, biseparable B, W and GHZ classes, respec-
tively. We provide the canonical form of witness operators
for the GHZ and W classes, and give the first examples
of such witnesses. The study of the family of tripartite
states given in Eq. (9) allows us to prove that the W class
is not of measure zero. We conjecture and give some evi-
dence that all PPTES of three-qubit systems do not require
GHZ-type pure states for their formation. We formulate
a sufficient condition which allows us to check construc-
tively if a state belongs to the W class (B class). Finally,
we present a family of PPT entangled edge states of three
qubits with maximal sum of ranks.
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