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Advective Coalescence in Chaotic Flows
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We investigate the reaction kinetics of small spherical particles with inertia, obeying coalescence type
of reaction, B 1 B ! B, and being advected by hydrodynamical flows with time-periodic forcing. In
contrast to passive tracers, the particle dynamics is governed by the strongly nonlinear Maxey-Riley
equations, which typically create chaos in the spatial component of the particle dynamics, appearing as
filamental structures in the distribution of the reactants. Defining a stochastic description supported on
the natural measure of the attractor, we show that, in the limit of slow reaction, the reaction kinetics
assumes a universal behavior exhibiting a t21 decay in the amount of reagents, which become distributed
on a subset of dimension D2, where D2 is the correlation dimension of the chaotic flow.

DOI: 10.1103/PhysRevLett.87.038301 PACS numbers: 82.40.Bj, 47.52.+j, 47.70.Fw, 87.23.Cc
The coupling between the generically nonlinear charac-
ter of environmental flows and the spatial distribution of
growing and (temporally) evolving populations (such as
planktons) advected by these flows attracted considerable
interest recently [1–3]. The flow in fluid environments of
large extensions, such as oceans, presents imperfect mix-
ing properties. This is largely due to the fact that the body
of these fluids is striated by running currents, by the vor-
tices and eddies generated by obstacles such as large rocks
or islands and peninsulas, or by the winds blowing across
the fluids’ surface [4–6]. A small particle (about the size
of a plankton) advected by this flow typically follows a
chaotic path; i.e., it is subjected to chaotic advection. In
such conditions, the spatial distribution of particle ensem-
bles has a filamental structure [1,7]. It has recently been
shown [1] that in the limit of massless passive point trac-
ers, and open chaotic flows (for the case of closed flows see
Ref. [8]), the reaction kinetics of autocatalytic reagents is
entirely different from the traditional surface reaction, be-
ing singularly enhanced and catalyzed by the underlying
fractal advection patterns.

Herewith, we analyze active chaos with an activity com-
ponent that plays an important role in biological popu-
lation dynamics [9], and agglomeration phenomena in
environmental physics, physical chemistry, and engineer-
ing [10–12]. In crowded populations, when the local
density exceeds a critical value, the mortality rate of
individuals increases due to the fact that the niches they
occupy (food, necessary chemicals, light) have only a
finite capacity. Qualitatively, this may be modeled by
coalescence type of reaction B 1 B ! B. Namely, if two
individuals become closer than a given reaction range s,
one of them dies on an average time scale t that is also
0031-9007�01�87(3)�038301(4)$15.00
defined as the average reaction lag. The reaction range s
represents a crowding threshold for the active population.
When the population is made up of small particles, such
as phytoplanktons which thrive in a fluid media, the
fluid dynamics has a crucial role on the evolution of the
population due to the local coupling between the spatial
character of the reaction (the fate of the reaction depends
on the neighborhood occupancy of the particles) and
the chaotic fluid dynamics that is constantly stirring the
population.

In this Letter, we show that for the case of finite-size
particles with nonzero mass and nonzero spatial extension,
chaotic behavior may appear in the physical space com-
ponent of the particle dynamics, and it arises due to the
dissipative nature given by the Stokes drag. This discrimi-
nating chaotic dynamics ultimately generates a nontrivial
reaction kinetics which attains a universal limit for reac-
tion lags of the order of or larger than the inverse of the
largest average Lyapunov exponent. In this limit, the tem-
poral evolution of the reaction kinetics is independent of
the details of the chaotic dynamics, and even of the dimen-
sionality of the flow. The information about dimensionality
and the properties of the chaotic set are important on the
level of coefficients, but not on the level of exponents. In
particular, we show that, in the slow reaction limit, the to-
tal number of particles decays as t21. The coefficient of
proportionality describes the spatial distribution of the re-
actants that is shown to occupy only a subset with fractal
dimension D2 on the attractor.

We emphasize that dissipative chaotic behavior in the
spatial component of the dynamics arises solely from the
Stokes drag in the advection dynamics and from the time
dependence of the underlying flow (which can be as simple
© 2001 The American Physical Society 038301-1
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as a periodic flow). The massless passive point-tracer
approach [1] is a somewhat oversimplified picture of the
reality. Since the tracers in real flows often cannot be
considered to be massless point particles, it is important
to address the question of finite-size effects on the par-
ticle dynamics [13]. These effects are the force exerted on
the particle by the undisturbed flow, the buoyancy force,
the Stokes drag, the added mass effect, and the Basset-
Boussinesq history term including the Faxén corrections.
The equations, including these effects at low Reynolds
number, were explicitly given by Maxey and Riley [14,15].

To illustrate the finite-size effects on the advective
coalescence problem, we choose one of the simplest
incompressible cellular flow [16–18] with periodic time
dependence, given by the stream function

c�x1, x2� � �1 1 k sin�vt��U0L sin�x1�L� sin�x2�L� ,
(1)

where U0 is the velocity amplitude, pL is the size
of the vortex cell, k and v are the amplitude and
angular frequency of the temporal oscillation of the
flow field, respectively. The contour plot of the
stream function is shown in Fig. 1. The fluid ele-
ment’s velocity u at point �x1, x2� is then obtained
from u � = 3 c , where c � �0, 0, c�. The time-in-
dependent version of the flow dynamics �k � 0�
was first considered by Stommel [5] as a simple model
to describe the distribution of planktons resulting from
the cellular motion induced by winds in lakes and oceans,
often called the Langmuir circulation [4]. The effects of
finite-size particles of this particular flow, without forcing
�k � 0�, were analyzed in great detail by Maxey [16]. The
asymptotic particle trajectories are well defined smooth
curves extending from cell to cell. The situation becomes
completely different, and the flow dynamics inherently
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FIG. 1. Contour plot for the stream function in Eq. (1) (con-
tinuous closed curves), and the chaotic attractor (dots) for the
stroboscopic map of the flow generated using Eq. (2).
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chaotic, if time dependence is also introduced. Here we
shall not reproduce the derivation but just present the final
equations of motion in dimensionless parameters as [18]

dV
dt

� A�u 2 V 1 W� 1 R

µ
u 1

V
2

∂
? =u 1
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2

≠u
≠t

,

(2)

where V is the velocity of the particle (in units of U0),
and u � u���Y�t���� is the velocity field (in units of U0) at
the position (in units of L) Y�t� of the particle. The (di-
mensionless) parameters A, R, and W can be expressed
in terms of L, U0, the particle radius a, the particle mass
mp, the fluid’s viscosity m, the fluid mass displaced by
the particle mf , and the gravitational acceleration g. The
parameter A � 6pamL��U0�mp 1 mf �2�� represents the
inertia effect (larger values imply smaller inertia). The
limit of A ! ` is the tracer particle limit. The buoy-
ancy parameter is R � mf��mp 1 mf�2�. The regime
R . 2�3 describes bubbles, and R , 2�3 corresponds to
aerosols. The terminal velocity of the particle in still fluid
is given by W � �mp 2 mf �g��6pam�.

Because of the spatial periodicity of the flow field, the
dynamics of the particles can be considered to be restricted
to a basic cell �0, 2p� 3 �0, 2p� with periodic boundary
conditions. We consider the stroboscopic mapping of the
flow at the period of the flow field. Throughout the simula-
tions we keep the parameters fixed at the following values:
k � 2.72, v � p, A � 3.2, R � 1, and W � �0, 20.8�.
The time on the stroboscopic map is measured in units of
the flow’s period, T � 2p�v � 2. We find that in this
bubble regime, where the particles are lighter than the sur-
rounding fluid, with large enough amplitude of the forcing
(large enough that the rotation of the vortices change their
direction periodically) the attractor is chaotic and strange
[19], as shown in Fig. 1. This fact is supported by the com-
puted largest average Lyapunov exponent, L1 � 0.02, and
the box-counting dimension D0 � 1.62.

The activity, given by the coalescence process B 1 B !

B, is implemented in the following way. On a grid of size
´, we choose a set of boxes that covers the chaotic attractor
and put a particle at the center of each box. There are
a total of N�´� boxes covering the attractor. We evolve
forward in time each particle in the system by integrating
Eq. (2) for some fixed time t (which is measured in units
of T ), and put the particle in the box at the end point
of the trajectory. If two or more particles end up in the
same box, the first one to arrive remains in it, and the
others are removed from the system. We then repeat this
procedure to obtain the time evolution of the coalescence
process. For simplicity, we choose s � ´ � 5 3 1023

to be the crowding threshold. Actually, the reaction does
not necessarily take place for all the particles at the same
time but rather randomly in time. We approximate this
situation by regarding t as the mean reaction time of a
particle. This approximation does not have a substantial
effect on the qualitative results [20].
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In the simulations, we monitor the number density of
the particles defined as n�t� � N�t��N0, where N �t� is the
total number of particles at time t in the N0 � N�´� boxes
covering the attractor. A typical result from the simulations
for the number density n�t� is shown in Fig. 2 on a log-log
scale for two t values, t � 2 (the 1 symbols) and t � 10
(the 3 symbols). We find that the asymptotic temporal
behavior is given by n�t� � t21, which seems to be also
closely obeyed even for smaller t values (such as t � 2,
where the exponent of the decay is � 2 0.9).

In the following, we show analytically that this type of
behavior, in the limit of slow reaction (large t), is, in fact,
a consequence of the universality of the coalescence re-
action kinetics of the system. In order to derive that, we
first recall that the natural invariant measure of an ´ box
is the probability for the trajectory to visit that box. Based
on that, on a statistical level, we may approximate the dy-
namics of the flow by a stochastic process of simply shuf-
fling the particles among the boxes covering the attractor,
according to the probability given by the natural measure
of the chaotic dynamics. Let p1, p2, . . . , pN be the natu-
ral measure of each particular ´ box covering the attractor
(the natural measure is normalized,

PN
j�1 pj � 1). The

shuffling step is defined as follows: take the image of the
set of N�t� particles such that the image of a particular
particle is in box i with probability pi. Notice that this
is a parallel updating process. After each shuffling, coa-
lescence is imposed in every box containing two or more
particles. If we focus on one step of this stochastic pro-
cess (shuffling 1 coalescence), we may ask the following
question: What is the expected number of boxes that are
not empty after one step of the stochastic process, if at
the beginning of the step we had m particles in m differ-
ent boxes? Using combinatorial analysis, we infer that the
probability p�m, k� of ending up with k nonempty boxes
is given by the sum of
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FIG. 2. The time evolution of the particle density for t � 2
(1 symbols) and t � 10 (3 symbols). The stars (�) correspond
to the random-shuffling model using the natural measure on the
attractor, and the continuous line is Eq. (5). The dashed line is
a reference line of slope 21.
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m!
m1! · · ·mk!

p
m1
i1 · · ·p

mk
ik

over all possible sets of integers i1, . . . , ik chosen from
�1, 2, . . . ,N	 without replacement and all possible sets of
integers m1, . . . , mk such that 1 # m1, . . . , mk , m and
m1 1 · · · 1 mk � m. The sum can be reduced to

p�m, k� �
kX

j�1

�21�k2j

µ
N 2 j
k 2 j

∂ X
lj

� pl1 1 · · · 1 plj �
m,

(3)

if k # m, and p�m, k� � 0 otherwise. The second sum
is taken over all � N

j � possible choices of j numbers
�l1, l2, . . . , lj	 �� lj� from �1, 2, . . . ,N	. In particular, if
one would have a uniform measure, i.e., p1 � · · · �
pN � 1�N , this distribution would become related
to the Stirling numbers of the second kind S�m, k�:
p�m, k� � �N�mN2mS�m, k�, where �N�m � N�N 2

1� . . . �N 2 k 1 1� and S�m, k� �
1
k!

Pk
j�0�21�j�k

j � �k 2

j�m. From (3) we can compute the average number density
of nonempty boxes as


k�m

N
�

1
N

NX
k�1

kp�m, k� � 1 2
1
N

NX
i�1

�1 2 pi�m. (4)

However, the process is an iterative one: one starts with m
particles, then we obtain m1 # m after one step, m2 # m1
after two steps, etc. This decay process can be described
by (4) if one replaces the exponent m on the right-hand
side of Eq. (4) with Nn�t� and on the left-hand side, by
definition, with n�t 1 1�, yielding the map

n�t 1 1� � 1 2
1
N

NX
i�1

�1 2 pi �Nn�t�. (5)

Choosing n�0� � 1, the time evolution of the number
density n�t� obtained from Eq. (5) is plotted in Fig. 2 (con-
tinuous line). Notice the excellent agreement with � sym-
bols that represent the average of 20 runs of the direct
simulation of the stochastic process consisting of random
shuffling and coalescence, which we have described above.
Since N � N�´� ¿ 1, pi ø 1 for all the boxes, we may
expand �1 2 pi�Nn�t� up to the second order in pi , which
yields

dn
dt

� 2C�n�t��2, (6)

where C � �N�2�
PN

i�1 p2
i . The solution of Eq. (6) [if

n�0� � 1] is just �Ct 1 1�21; i.e., it is �t21 for long
times, as observed in our simulations. The coefficient
C can simply be related to the set of dimensions [21].
C �

x�0�x�2�
2 � ´D22D0 , where Dq � lim´!0

1
q21

lnx�q�
ln´ ,

and x�q� �
P

i p
q
i [note that N � N�´� � x�0�]. D2 is

the correlation dimension.
If one looks at the number N �t� instead of the number

density, one finds that the decay law for long times is

N �´, t� � ´2D2 t21. (7)

Our results, as given in this equation, are the following:
(i) the temporal behavior is universal and independent of
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FIG. 3. Comparing �n�t��2 (3 symbols) and n1�t� (1 symbols)
at t � 10.

the particularities of the chaotic flow, and (ii) the surviving
particles are distributed selectively on a subset of dimen-
sion D2 on the attractor at a given instant of time.

Based on Eq. (6), we claim that the continuum limit is
the one described by the Smoluchowski equation obtained
in the theory of the agglomeration reaction Bi 1 Bj !

Bi1j [11]. Although here the masses are added not an-
nihilated, one can still use this formalism if one looks at
certain quantities such as the total number of particles, or
the number of particles that have yet to experience a re-
action, N1�t� � n1�t�N�t�. The mass index in this case is
replaced by a collision index. Equation (6) is the same as
the one for the total number of particles in the agglomer-
ation process. We also evaluated the quantity n1�t� (from
the flow), which in the Smoluchowski approach obeys
n1 � n2, at all t times. Figure 3 shows in the same plot
n1�t� and �n�t��2 from the flow simulations for t � 10.
Note the excellent agreement at all times t between the
curves, corroborating our findings.

It is important to mention that our model described by
Eq. (6) is strongly related to the experiment done by Droop
[22], which verified that the nutrient-limited population
growth dynamics obey the logistic equation. In the limit of
low concentration, the logistic equation reduces to Eq. (6).
See also Gurney and Nisbet [23]. In this Letter, however,
the coefficient is related to the fractal properties of the dy-
namics, while in the experiment it depended on the initial
concentration of the nutrient and on the properties of the
growth mechanism. The validity of our model is supported
by the finding by Coma et al. [24] which showed that there
are many examples of aquatic colonies where the growth
phases are separated.

In conclusion, we have shown that the dissipativity of
the advection dynamics (in our example due to finite-size
effects and inertia) can have drastic effects on the kinetics
of the coalescence type of reaction that models the crowd-
ing phenomena of biological populations (phytoplanktons)
advected in fluid flows with imperfect mixing (oceans,
038301-4
lakes). The distribution of the surviving reactants selects
a nontrivial subset of the attractor in the limit of slow re-
action which exhibits universal behavior described by the
Smoluchowski equation.
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