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Superconducting 2D System with Lifted Spin Degeneracy: Mixed Singlet-Triplet State
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Motivated by recent experimental findings, we have developed a theory of the superconducting state
for 2D metals without inversion symmetry modeling the geometry of a surface superconducting layer
in a field-effect transistor or near the boundary doped by adsorbed ions. In such systems the twofold
spin degeneracy is lifted by spin-orbit interaction, and singlet and triplet pairings are mixed in the wave
function of the Cooper pairs. As a result, spin magnetic susceptibility becomes anisotropic and Knight
shift retains finite and rather high value at T � 0.
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In this presentation we consider the energy spectrum and
some other properties of the superconducting state for a
two-dimensional (2D) system without inversion symmetry
when the twofold degeneracy of the electron energy spec-
trum is lifted by spin-orbit (SO) interaction. We have been
motivated by several recent experimental discoveries. Su-
perconductivity (SC) with critical temperature Tc � 91 K
existing in small islands at the surface of insulating WO3

(when the surface was doped by Na1 ions) was reported
in Ref. [1]. We speculate that strong near-surface electric
fields should be present in the surface layer of these crys-
tals quite similar to the 2D superconducting fullerene and
polyacene crystals in the field-effect-transistor geometry
[2]. In centrosymmetric crystals the 3D inversion ensures
twofold degeneracy of the energy spectrum throughout the
Brillouin zone both in the normal [3] and in SC [4] states.
In SC state this symmetry allows classification of Cooper
pairs by their parity (although spin and orbital degrees of
freedom are already mixed by SO interaction [4]). If 3D in-
version is broken by the space inhomogeneity of the order
parameter, mixing of the singlet and triplet states (or, more
rigorously, states of different parity) becomes possible
[5,6]. The twofold degeneracy of the spectrum is always
broken in the surface layer, even homogeneous, because
of the SO coupling and violation of 3D inversion. This
effect is known and well documented experimentally [7,8]
in physics of semiconductor microstructures, and has been
recently discovered in surface states of metallic Au [9] and
also of Mo and W covered by Li [10].

It is known that split-off 2D electron bands may form
at the surface (Tamm levels). Lowering of the symmetry
in the surface layer results in a new SO invariant of the
group C`v (and its discrete subgroups) in the free electron
Hamiltonian

Hso � a�s 3 p� ? n (1)

dubbed in the literature as Rashba term [11,12]. Here p
is a 2D quasimomentum, s are Pauli matrices, and n is a
unit vector normal to the surface �h̄ � 1�. Despite the fact
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that p is two-dimensional, the 3D group controls the sym-
metry of the system since n determines the preferred di-
rection of the normal to the plane and spins are always 3D.
Total single electron Hamiltonian, H � H0 1 Hso, diago-
nalizes in eigenfunctions hl�p� and eigenvalues ´l�p�,

hl�p� �
1
p

2

µ
1

il exp�iwp�

∂
,

´l�p� � ´0�p� 1 ´so
l �p�, ´so

l �p� � 2alp , (2)

l � 61, and the Fermi surface splits into two sheets. SO
interaction Hso puts electron spins into the plane, ��n�,
where they are aligned perpendicular to the quasimomen-
tum p. The magnitude of the coefficient a depends on the
electric field, presence of adatoms at the boundary, atomic
weight, and atomic shells involved [13]. Angle resolved
photoemission spectroscopy data on the s-p surface band
of Au are in excellent agreement with Eq. (2). They result
in a nearly isotropic spectrum with a � 5 3 1029 eV ?

cm (that is, somewhat larger than in typical semiconduc-
tor systems) and in the SO splitting at the Fermi level
2jajpF � 0.11 eV [9]. Anisotropic d-derived bands of
Mo and W show even larger SO splittings up to 0.13 and
0.5 eV, respectively, depending on the surface concentra-
tion of adsorbed Li1 ions.

In what follows we investigate specific properties of
BCS-type 2D SCs caused by lifting the electron spin
degeneracy in the presence of the SO interaction. This
problem has been addressed previously by Bulaevskii
et al. [14] who investigated magnetic properties of layered
and pyroelectric metals and by Edelstein [15] who, inter
alia, predicted magnetoelectric effect in low-symmetry
SCs and discussed the possible role of SO effects in
layered high-Tc cuprates. We find the explicit form of the
wave function of Cooper pairs, including its singlet and
triplet components, and demonstrate the dramatic effect
of the symmetry breaking on spin magnetic susceptibility
and Knight shift.
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For the sake of simplicity we consider a two-particle
interaction U�jr 2 r0j� (here and below all vectors lie in
the plane). Retardation effects such as due to the phonon
mediated attraction are known to be of no importance for a
weak coupling scheme. To put it briefly, we do not address
at all the issue of the mechanism responsible for pairing,
and restrict ourselves by features pertaining to the reduced
dimensionality (for a proper symmetry at the surface) and
spin-split isotropic electron spectrum. The SO splitting at
the Fermi level, 2apF (here and below a . 0), can be
comparable to, or exceed, the SC characteristic scale, the
critical temperature Tc. However, it is assumed to be small
compared to the Fermi energy, 2apF ø ´F , and p1 2
p2 ø pF , where pl � p6 are Fermi momenta for the
two SO split sheets of the Fermi surface. Therefore, near
the Fermi energy the electron dispersion is taken linear,

jl�p� � yF�p 2 pl�, pl � �1 1 al�yF �pF .

(3)

The total electron Hamiltonian H � H0 1 Hso 1 Hint
includes the interaction Hamiltonian

Hint �
1
2

X
lmnr

X
pp0q

Ulmnr�p, p0, q�

3 a1
l �p�a1

m �2p 2 q�an�2p0 2 q�ar�p0� . (4)

Here al�p� are Fermi electronic operators, and
Ulmnr�p, p0, q� is the interaction potential written in
the representation of the spinors hl�p�

Ulmnr�p, p0, q� � U�jp 2 p0j� �hl�p�, hr �p0��

3 �hm�2p 2 q�, hn�2p0 2 q�� ,

(5)
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U�jpj� is the Fourier image of the interaction potential, and
scalar products of spinors are equal to

�hl�p�, hl0 �p0�� �
1
2 �1 1 ll0 exp�2i�wp 2 wp 0��� .

(6)

In what follows we employ the method of thermody-
namic (Matsubara) Green functions [16]. Onset of the SC
state manifests itself as the appearance, side by side with
the regular Green functions [17]

gl�p, t 2 t0� � 2	T �ãl�p, t�ã1
l �p, t0��
 , (7)

also of the nonzero anomalous (Gor’kov) averages [18]

fl�p, t 2 t0� � l	T�ãl�p, t�ãl�2p,t0��
 , (8)

f1
l �p,t 2 t0� � l	T�ã1

l �p, t�ã1
l �2p, t0��
 , (9)

where operators ãl�p, t� are in the Heisenberg representa-
tion. Functions fl�p� � fl�p, 01� that obey the relation

f�
l�p� � f1

l �2p� (10)

are components of the wave functions of Cooper pairs at
each spectrum branch. Fermionic commutation relations
result in

fl�p� � 2fl�2p� . (11)

From equations of motion for the operators ãl�p, t�,
≠tãl�p, t� � �H, ãl�p, t��, equations of motion for
gl�p, t 2 t0� and fl�p, t 2 t0� follow in the usual
way. They include four-fermion T products, the standard
decoupling [16,18] of which results in
�≠t 1 ´l�p��gl�p, t 2 t0� 2 l
X
mp0

mUllmm�p, p0, 0�fm�2p0�f1
l �2p, t 2 t0� � 2d�t 2 t0� , (12)

�≠t 2 ´l�p�� f1
l �2p, t 2 t0� 1 l

X
mp 0

mUmmll�p0, p, 0�f1
m �p0�gl�p, t 2 t0� � 0 . (13)
For the Cooper pairs with the zero total momentum
forming the condensate, q � 0 in Ullmm�p, p0 , q�. Next
simplification in the potential comes from the fact that
it enters in Eqs. (12) and (13) only in the combination
with the functions fm�p�; hence, because of Eq. (11),
Ullmm�p, p0, 0� should be antisymmetrized. Simple
algebra shows

Ulm�p, p0� � 1
2 �Ullmm�p, p0, 0� 2 Ullmm�p, 2p0, 0��

� 1
2lmU�0� exp�i�wp 0 2 wp�� . (14)

Having in mind s pairing we neglected the momentum de-
pendence of the potential in the right hand side of Eq. (14).
Making Fourier transformation of Eqs. (12) and (13) to
the Matsubara frequencies ivn, we find the final form of
Gor’kov equations

�ivn 2 ´l�p��gl�p, vn � 1 D�p�f1
l �2p, vn� � 1 ,

(15)
D1�p�gl�p, vn� 1 �ivn 1 ´l�p�� f1
l �2p, vn� � 0 ,

(16)

where the “gap” D�p� is

D�p� � exp�2iwp�D0 ,

D0 �
1
2 U�0�

X
lp

exp�iwp�fl�p� , (17)

D1�p� � D��p� .

Before we turn to the discussion of the nature of the or-
der parameter in the new SC state, let us mention that the
“gap function” D�p� depends on p through its phase. This
dependence is inherent in the nonperturbative character of
the spinor basis functions of Eq. (2) after spin degeneracy
is lifted. It cannot be eliminated but can be changed by a
different choice of phase factors in Eq. (2). Green func-
tions diagonal in branch indices are [17]
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gl�p, vn� � 2�ivn 1 jl�p���Dnl�p� ,

f1
l �2p, vn� � D1�p��Dnl�p� , (18)

Dnl�p� � v2
n 1 j2

l�p� 1 jDj2.

The self-consistency condition for jD�p�j � D�T� is

2
1
2TU�0�

X
nlp

D21
nl �p� � 1 . (19)

In the approximation 2apF ø ´F , the left hand side of
Eq. (19) does not depend on a and coincides with the BCS
equation for a � 0. The energy spectrum found from the
poles of gl�p, vn� and fl�p, vn� is

El�p� � 6�y2
F�p 2 pl�2 1 D2�T��1�2; (20)

i.e., it consists of two gapped branches. One sees that
weak SO coupling makes no changes in thermodynamical
properties of the new BCS-like state. In particular, the
relation D�0� � �p�g�Tc � 1.76Tc holds in this case.

The Green functions were found above in the represen-
tation of energy branches indices l. To get insight on the
symmetry of the new SC state we rewrite them as matri-
ces Ĝ�p, vn� and F̂�p, vn� in the basis of the components
h

a
l �p� of the spinors hl�p�,

Gab�p, vn� �
X
l

ha
l �p�gl�p, vn�hb

l �p��,

Fab�p, vn� �
X
l

ha
l �p�fl�p, vn�hb

l �p� ,
(21)

and split gl�p, vn� and fl�p, vn� into their symmetric and
antisymmetric in l parts,

gl � gs 1
1
2 lgas, fl � fs 1

1
2 lfas . (22)

Equation (22) implies that Ĝ � Ĝs 1 Ĝas and F̂ � F̂s 1
F̂as. Antisymmetric parts of gl and fl (and also of Ĝ and
F̂) originate because of the splitting of the energy spectrum
by the SO interaction. It is convenient to write Ĝs and Ĝas
(and also F̂s and F̂as) in terms of the Pauli matrices s and
the unit matrix s0. After some algebra we get

Ĝs�p, vn� � gs�p, vn�s0 , (23)

Ĝas�p, vn� �
1
2 gas�p, vn� �p0 3 s� ? n , (24)
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F̂s�p, vn� � � fs�p, vn�eiwp �sy , (25)

F̂as�p, vn� � 2� fas�p, vn�eiwp �sy�s ? p0� , (26)

where p0 � p�p. Phase factors eiw�p� drop out from both
F̂s and F̂as according to Eqs. (17) and (18). Ĝas and F̂as

components of the Green functions are of the order of unity
but only inside a narrow ring of the momentum space,
Dp � p1 2 p2, between two Fermi surfaces.

Both contributions to Ĝ are invariants of the group C`v;
however, they are of opposite parity if the transformation
p ! 2p, rotation by p around the z axis, is performed
only in coordinate space with spin remaining unchanged.
Both Ĝas and F̂as depend on the azimuth of p0. The fac-
tor �s ? p0� is a pseudoscalar to the 3D inversion. We
attribute to Ĝas a number of transport effects in normal
conductors with lifted spin degeneracy which have been
observed or predicted.

The existence of nonzero F̂ function, Eqs. (25) and
(26), means the broken gauge symmetry in the SC state,
U�1�. Equation (11), when expressed in terms of the func-
tions Fab�p, vn�, reflects permutational symmetry of the
wave function of the two electrons of the pair, �p, a�
and �2p, b�. If there is the 3D inversion center, one
can make the total wave function odd either by choos-
ing an antisymmetric spin wave function while the space
part is symmetric (singlet pairing, S � 0), or, vice versa,
by choosing a symmetric spin wave function while the
space part is antisymmetric (triplet pairing, S � 1); see
Ref. [4]. Therefore, Fab ~ �sy�ab for S � 0 and Fab ~

���sy�s ? p����ab for S � 1. For the broken 3D inversion
near the surface, the Cooper pair wave function F̂ becomes
a mixture of singlet and triplet pairings. F̂s�p,vn � is the
singlet part component, while F̂as�p,vn � provides for the
triplet admixture.

As an example of the phenomenon in which breaking the
parity of the order parameter manifests itself, we calculate
the spin susceptibility xsp�T � of the surface SC state. It
can be directly tested by Knight shift experiments. For
systems with strong SO coupling, the total magnetic sus-
ceptibility x cannot be split into the orbital and spin parts.
However, when a ø yF such a division is justified [19],
and we find xsp neglecting the quantization of the orbital
motion. Following Ref. [20], we calculate the tensor x

sp
ij

�i,j � x, y, z� as a linear spin response to the magnetic
field B
x
sp
ij � 2m2

BTn�´F �
X
vn

Z
dj tr�siĜ�p, vn�sjĜ�p, vn� 2 si F̂�p, vn�sjF̂

1�p, vn�� . (27)
Here the trace is taken over the spin indices, n�´F � �
pF�2pyF is the density of states at the Fermi level (per
one spin orientation), and mB is the Bohr magneton. In
the normal state the right hand side of Eq. (27) diverges
because of Landau singularity [16], and to resolve it the
summation over vn should be performed first. Finally

x
sp
N � 2m2

Bn�´F� . (28)
Remarkably, x
sp
N found in the weak field limit, mBB ø

apF , when Zeeman splitting is small compared to the SO
splitting, is isotropic, and coincides exactly with the Pauli
susceptibility. Since the difference in xsp in the normal
and SC states comes from the integration over the region
of only about D�T� near ´F , the appropriate integral con-
verges. Therefore, in these terms the integration over j
037004-3



VOLUME 87, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 16 JULY 2001
can be performed first. Nondiagonal components of xsp

are equal to zero because of the C`v symmetry, while for
the diagonal components of xsp (in-plane component x

sp
k

and perpendicular-to-the-plane component x
sp
� ) somewhat

cumbersome calculations result in

x
sp
� �T � � x

sp
N

(
1 2 pT

X
vn

D2�T�p
v2

n 1 D2�T�

?
1

v2
n 1 D2�T� 1 �apF �2

)
, (29)

x
sp
k �T� �

1
2x

sp
� �T� 1

1
2 x

sp
N

(
1 2

X
vn

pTD2�T�
�v2

n 1 D2�3�2

)
.

(30)

It follows from Eqs. (29) and (30) that x
sp
� �T� fi x

sp
k �T�

and x
sp
� �0�, x

sp
k �0� fi 0; i.e., spin susceptibility is

anisotropic and does not turn into zero at T � 0. We
attribute this fact to the admixture of the triplet state
to the s-type SC ground state because of the broken
parity. For apF ø D�T �, it follows from Eqs. (29) and
(30) that x

sp
� �0� � 2

3 �apF�D�T ��2x
sp
N and x

sp
k �0� �

1
3 �apF�D�T��2x

sp
N . Hence, for a � 0 the BCS result

x
sp
� �0� � x

sp
k �0� � 0 is recovered. In the opposite limit

D�T� ø apF , we get x
sp
� �0� � x

sp
N and x

sp
k �0� � x

sp
N �2;

hence, x
sp
� �T� is nearly T independent while x

sp
k �T� drops

twice when T changes from Tc to T � 0. Anisotropy
of x�T � in the SC state has already been inferred in
Ref. [14]. Our expressions for both x

sp
� �T� and x

sp
k �T�

essentially differ from those of Ref. [14].
We expect mixed singlet-triplet states to arise in the

electrical contact areas and influence proximity effects and
spin injection phenomena basic for spintronics [21].

In conclusion, we have shown that spin-orbit interac-
tion lifts the spin degeneracy for 2D (surface) supercon-
ductor resulting in the two gapped branches in the energy
spectrum. Thermodynamics of such a state would be al-
most identical to a BCS-like superconductor. Because of
the broken 3D inversion symmetry at the surface, the pair
wave function is the mixture of singlet and triplet compo-
nents. As a result, strong anisotropy appears in the spin-
susceptibility tensor and the Knight shift. Splitting of two
gapped branches in the momentum space depends on the
strength of SO coupling. The latter can considerably ex-
ceed the SC scale Tc to be observed by other means.
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