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Evidence of Two Distinct Dynamic Critical Exponents in Connection with Vortex Physics
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The dynamic critical exponent z is determined from numerical simulations for the three-dimensional
(3D) lattice Coulomb gas (LCG) and the 3D XY models with relaxational dynamics. It is suggested that
the dynamics is characterized by two distinct dynamic critical indices zo and z related to the divergence
of the relaxation time 7 by 7 = £% and 7 = k™%, where ¢ is the correlation length and k the wave
vector. The values determined are zy = 1.5 and z = 1 for the 3D LCG and zy = 1.5 and z = 2 for the
3D XY model. Comparisons with other results are discussed.
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A neutral superfluid such as “He and a superconductor
in the limit of large London penetration depth can be char-
acterized by a complex order parameter. The XY model
can be viewed as a discretized version of this type of sys-
tem in terms of the phase of the order parameter [1]. An
interesting feature of this class of models is the presence
of thermally generated topological defects which in three
dimensions (3D) take the form of vortex loops. The su-
perconducting phase transition from the vortex loop point
of view separates a low-temperature phase consisting of
closed vortex loops of finite extent from a high-temperature
phase where the loops can disintegrate [2—4]. The static
thermodynamic properties of the XY model allow a dual
representation in terms of the vortex degrees of freedom.
In particular, the Villain transformation of the XY model
gives rise to the dual vortex loop model termed the lattice
Coulomb gas (LCG) [5]. A crucial point in the following
is that this duality does not include the dynamic properties
which might be quite different.

The universality of the dynamic behavior is weaker and
requires in addition to the static universality also that cer-
tain global features of the dynamics are the same. In the
dynamic universality classes defined by Hohenberg and
Halperin [6], these additional global features are expressed
as local conservation laws. According to this scheme, the
dynamics of a 3D superfluid belongs to model F charac-
terized by the dynamic critical exponent z = 1.5 [7]. A
model with purely relaxational dynamics on the other hand
belongs to model A with z = 2 [6]. In case of a supercon-
ductor, both model F and model A have been proposed as
the appropriate dynamical class [6,8]. Since relaxational
dynamics is related to model A, it might appear surpris-
ing that the critical dynamic index z for the 3D LCG
for periodic boundary conditions (PBC) and with purely
relaxational dynamics in Ref. [9] (verified in Ref. [10])
was found to be z = 1.5 instead of z = 2. Similarly,
the 3D XY model with fluctuating twist boundary condi-
tion (FTBC) and relaxational dynamics was found to have
z = 1.5 [11]. On the other hand, the 3D XY model with
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PBC and relaxational dynamics has z = 2 consistent with
model A. This implies that the choice of boundary condi-
tion affects the value of z [11]. In the present Letter, we
show that the same type of sensitivity applies to the 3D
LCG, giving rise to two distinct exponents z = 1.5 and
z = 1. Itis proposed that these results for the LCG model
and the XY model reflect the existence of two distinct criti-
cal indices corresponding to 7 « £% and 7 « k™%, where
7, &€, and k denote relaxation time, coherence length, and
wave vector, respectively.

The 3D LCG on a cubic lattice is defined by the Ham-
iltonian [5,12,13],

1 3
H=—3 > qaiWt = 1)qa. 1)
a=1 i,j

where q; = (q,;) represent the vortex line segment vari-
ables for each lattice site, one for each of the three lattice
directions e, go; € [0, 1, —1] corresponding to no vortex
segment, respectively, to a segment with vorticity 1 or —1
between neighboring lattice sites and subject to the con-
straint that the sum of the ¢g,;’s for the six directed links
reaching each lattice site is zero. We use PBC and W (r)
is the lattice version of the Coulomb interaction [13],
1 472e® - 1

W) = - % P 2)
where L is the total length of the lattice, the lattice con-
stant is 1, and k, = 2sin(k,/2), where @ = 1, 2, and 3.
The relaxational dynamics is implemented by a Metropo-
lis Monte Carlo update where each complete update of
the lattice is associated with one time unit (for details see
Ref. [9]). The voltage across the sample V is proportional

to the expansion rate of the vortex loops V % >,.r X
qr, where r denotes the site positions on the lattice. The
resistance R can then be obtained from the voltage fluctua-
tions through the Nyquist formula R o« [ T dn v (0)V(0)).
The scaling connection, R o 1/7, leads to the size scal-
ing at T., R « L™%, and the ¢ scaling of the resistivity,
p « &17% in the critical region [8]. The 3D LCG has
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a phase transition at 7, =~ 3.003 with v = 0.67 [14,15].
Finite-size scaling at T, gives zo = 1.5 [9,10]. In Fig. 1,
we demonstrate that the size converged ¢ scaling slightly
above T,, using & o« (T — T,)~7, also gives zo = 1.5.
This shows that zg = 1.5 is not a finite-size effect caused
by the boundary, but is a bulk property characterizing the
dynamics.

The LCG model defined with periodic boundary con-
ditions (PBC) corresponds to the XY model defined with
the fluctuating twist boundary condition (FTBC) [16]. The
Hamiltonian for the latter model is given by

H(0e,A) = — D cos(lr — Oria — €q - A), (3)

where the @ summation is over the three nearest neigh-
bors of r in the three lattice base directions. The relax-
ational dynamics is, as for the LCG model, implemented
by a Metropolis Monte Carlo update where each complete
update of the lattice is associated with one time unit (for
details see Ref. [17]). We use PBC for 6, which means
that A, is the average twist of the angle 6(r) across the
lattice in the « direction. The fluctuations in the twist
variable A, (r) are directly related to the voltage V,, across
the sample by V, = —L%Aa [18]. The correspondence
between LCG with PBC and the XY model with FTBC
basically hinges on the fact that the models defined with
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FIG. 1. Determination of zo from p « &!7% for the 3D LCG
with PBC for lattice sizes L = 10, 12, and 16 (triangles, circles,
and squares, respectively) and & = é = (T — T.)™" (see text).
As seen, the data are independent of lattice size. The broken
line is a least square fit to the linear part of the data and gives
7o = 1.4(1) consistent with zy = 1.5. The inset shows z — 1
from the slope (z — 1 = —slope) for the L = 16 data points,
obtained by least square fitting starting from the two data points
for the largest ¢ and then consecutively adding more data points
so that the rightmost data point in the inset is based on all but
one data point in the main figure. The dashed lines in the inset
give our rough estimate of the error.
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these boundary conditions allow for voltage fluctuations
across the system. In contrast, the usual PBC applied to
the 3D XY model is equivalent to A = 0 and the voltage
fluctuations across the system are then no longer properly
described by the model [11]. The 3D XY model with PBC,
within the Villain approximation, corresponds to the 3D
LCG model with PBC described by the modified Hamilto-
nian [19] [compare Eq. (1)],
3

1
H=) [zzqaiwm — 1)qa; + U(277Ma/L2):|,
a=1 i,j
4

where U(¢p) =Y. __ . exp[—(¢ + 2m)*/2T] is the Vil-
lain function, and M, is given by M = %er X (.
Since this Hamiltonian in Fourier space has the structure
H % Yy 200 Qa(K)W(K)qo(—K) + SkoU, the difference
with Eq. (1) is that in the modified Hamiltonian (4) the
k = 0 mode is suppressed. We focus on the scaling of the
vorticity correlation function,

1

Gk 1) = a3

(Gax(t)ga-k(0)), %)
where k is perpendicular to the « direction. In par-
ticular, G(k = 0,¢) has the scaling form G(k = 0,¢) «
F(t£7%)/& [11]. Figure 2 demonstrates that this scaling
is well borne out with the value z = 1. The data are from
the critical region just above T, where the data are size con-
verged and ¢ o« (T — T.)™", which we again emphasize
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FIG. 2. Determination of z from the scaling £G(0,1) =
F(t£7%) for the modified 3D LCG (corresponding to the 3D
XY model with PBC). The data are for lattice size L = 20 and
T = 3.07, 3.10, 3.14, and 3.30 (open squares, crosses, solid
circles, and asterisks, respectively). A good collapse is obtained
for z = 1, whf:reas the inset shows that no collapse is obtained
for z = 1.5 (¢ is defined as in Fig. 1). Consequently, z = 1,
which is different from zy = 1.5 obtained in Fig. 1.
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means that z = 1 is a bulk property and not a property that
vanishes for L = . Thus, just as for the 3D XY model
in Ref. [11], we obtain two distinct values of z = 1.5 and
z = 1, by allowing and suppressing the k = 0 mode.

As a resolution of this dichotomy, we suggest that
these models are characterized by two distinct indices
corresponding to 7 o« £% and 7 = k™%, Assuming such
a resolution would mean that the vorticity correlation
function G(k,t) in Eq. (5) in general scales as G(k,t) o«
F(thk*,t£7% k&)/ &, which precisely at T, for kpiy, =
271 /L reduces to

LG(kmin’t) = F(tkz

L ILT) . (6)
Choosing t = xkyi, gives F(x,xL*"%) which goes to
F(x,) for large L when z > zo and F(x,0) for z < z.
This means that, in the scaling limit of large ¢ (+ > 7,
where 79 is a microscopic characteristic time), we will
approach a scaling F(x) with x = tk%;, for large (small)
x when z > zp (z < zp). Vice versa, we will approach
a scaling limit F(x) with x = rL~% for large (small) x
when zg > z (z9 < 2).

We first test the possibility of two distinct indices for the
3D XY model with FTBC [see Eq. (3)]. The resistance R
for the 3D XY with FTBC is readily calculated from A, (¢)
(see [18] for details). G(k, ) is obtained by replacing g
with G, (r) = sin(6; — 6r+e,) in Eq. (5) and multiplying
by k% [20]:

Gk 1) = 2 e (Da1(0)). ™

Figures 3(a) and 3(b) demonstrate, by using the scaling
formR o« L™ f[L(T — T,) *]and LG(k,t) = F(tki,),
that for this model zo = 1.5 whereas z = 2, confirming
that zo # z. For z9 < z it should, in principle, also be pos-
sible to observe a crossover to F(tL %) for small enough
arguments (but still with # >> 7(); however, this limit was
not reached in the simulations [21]. It is interesting to
note that the exponent z = 2 associated with 7 o kS, for
the 3D XY model with FTBC, within error bars, has the
same value as the exponent zo = 2 found for the 3D XY
model with PBC [11]. This suggests that the difference
between FTBC and PBC arises from the difference in the
treatment of the voltage fluctuations across the system, or,
equivalently, the k = O fluctuations: The k£ = 0 fluctua-
tions for FTBC are associated with zo = 1.5. Changing to
PBC suppresses these fluctuations and the £k = 0 fluctua-
tions for PBC would then correspond to the ki, = 27/L
fluctuations for FTBC. This argument implies that z, for
PBC and z for FTBC should be identical, in accordance
with our numerical data.

Applying the same reasoning to the 3D LCG with PBC
would mean that zo = 1.5 and z = 1. Since in this case
7z < 7o, this would mean that LG(kpin,?) should scale
similar to F(x) with x = k&, for small enough x [com-
pare Eq. (6)]. Figure 4(a) shows that this prediction is con-
sistent with the data and that the scaling curve approaches
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FIG. 3. Demonstration that the 3D XY model with FTBC con-
tains two distinct indices z and zg, where z # zq. (a) Scaling of
resistance, R = L™ F[L(T — T.)""], close to and at T, gives
70 = 1.5. (b) Scaling LG (kpin, 1) = F(tkiin, tL ™) at T, gives
z = 2 for large ¢t (L = 10, 12, 16). Note that the scaling with
the larger of z and z; always dominates in the large ¢ limit.

the correct asymptotic form F(x) o 1/x'/% [22] in the limit
of small x. Figure 4(b) shows that the data for the largest
converged ¢ values are instead consistent with the scaling
F(x = tL™%), which is also in accord with the scaling
form given by Eq. (6). From this we conclude that the ap-
parent nonuniqueness of the critical exponent z for the 3D
XY model and the LCG with relaxational dynamics is con-
sistent with the existence of two distinct critical indices z
and z for the case when the models are defined so as to
allow for voltage fluctuations across the system.

We have here proposed the existence of two indices for
relaxational dynamics in 3D. On the other hand, the cor-
responding model with the resistively shunted Josephson
junction dynamics (RSJ) has zg = z [11,22]. This model
is closely related to the XY model and differs in that the
dynamics is subject to local current conservation, i.e., it
has a local conservation law which is not fulfilled by re-
laxational dynamics. In 2D, the whole low-temperature
phase below the Kosterlitz Thouless transition is quasi-
critical and for the 2D XY model (with FTBC) zo(T) =
27 Y(T) — 2 > 2, where Y is the helicity modulus, and
this value has been confirmed both for relaxational and RSJ
dynamics, whereas z = 2 # zo was found for the same
cases [18]. Consequently, the existence of two indices
Zo9 # z appears not to be restricted to relaxational dynam-
ics. One may also observe that the z value for the XY
model with relaxational dynamics is consistent with the
model A value z = 2 in the Hohenberg-Halperin classifi-
cation scheme [6] which to us suggests that the z defined
from 7 o k™% will, in general, be consistent with this clas-
sification scheme.

A common measurement for high 7. superconductors
is the IV characteristics. In this experiment, the voltage
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FIG. 4. Demonstration that the 3D LCG with PBC at T, contains two distinct indices z and z, within the single scaling function
LG (kmin,t) = F(tkZin, tL=%). (a) The data are for L = 6, 8, 10, 12, 16, 20, and 24. The inset shows that LG (kpi,, t) does not

1

scale with rk%;, 2 for the data shown (the value of LG decreases for increasing L for a fixed tk,‘;fnl‘s). The full drawn part of the
data for each size in the inset gives a middle section of the data corresponding to neither too large nor too small values of . These
full drawn middle sections of the data in the inset are the parts that collapse to a single scaling curve for z = 1, as demonstrated by
the main part of the figure. The broken curve in the main part is the leading small tk%;, dependence of the scaling function given
by C/tk%in, where C is a constant. This leading term is consistent with the scaling curve obtained from the data (C is used as an
adjustable parameter). (b) Data for L = 10, 12, and 16 obtained for larger t. These larger ¢ data collapse to a single curve with
z = 1.4. Note that this is consistent with the fact that the larger of z and zo dominates in the large ¢ limit.

across the sample is measured and, consequently, this
measurement relates to zo. The scaling prediction for
the nonlinear /V characteristics gives V « [, where a =
(zo + 1)/(d — 1) ind dimensions [8]. A comparison with
a=(z+ 1)/(d — 1), where z is calculated according
to the Hohenberg-Halperin classification scheme, is then
likely to be incorrect if the superconductor is described by
3D model A (because zg # z for this case), but would be
correct if it is described by 3D model F (because zp = z
for this case [11,22]). Consequently, the possibility of the
existence of two critical dynamic indices would have to be
taken into account when analyzing experiments. A crite-
rion for when z # zo and z = zo remains to be found.
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