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Evolution of Fractal Patterns during a Classical-Quantum Transition
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We investigate how fractals evolve into nonfractal behavior as the generation process is gradually
suppressed. Fractals observed in the conductance of semiconductor billiards are of particular interest
because the generation process is semiclassical and can be suppressed by transitions towards either
fully classical or fully quantum-mechanical conduction. Investigating a range of billiards, we identify a
“universal” behavior in the changeover from fractal to nonfractal conductance, which is described by a
smooth evolution rather than deterioration in the fractal scaling properties.
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Since fractals were first introduced to quantify the re-
currence of structure at increasingly fine magnifications
[1], they have successfully described a remarkable range
of natural patterns [2]. However, many studies of frac-
tals are “passive,” where rather than actively interacting
with the process generating the fractals, the experiments
are limited to a simple monitoring role. A more power-
ful approach is to induce fractals in an artificially con-
structed system where the conditions can be controlled
and adjusted with precision. To do this we construct
micron-sized “billiards” in high quality semiconductor ma-
terials. Analogous to a billiard table, electrons move along
a two-dimensional plane bounded by shaped walls. The
distance � between scattering sites within the semicon-
ductor material is greater than that between the walls, and
hence electrons passing between the billiard entrance and
exit openings follow ballistic trajectories determined pre-
dominantly by the shape of the walls [3]. Electrons in the
billiards follow both chaotic and stable classical trajecto-
ries and, through a semiclassical electron-wave interfer-
ence process, the mixed stable-chaotic dynamics generate
fractal patterns in the electrical conductance [4–11]. In
this Letter, we investigate a fundamental question —how
do fractals evolve into nonfractal behavior as the gener-
ating process is gradually suppressed? We suppress the
semiclassical process using controlled transitions towards
either fully classical or fully quantum-mechanical conduc-
tion. We show that the fractals are remarkably robust to
the suppression process —the transition to nonfractal be-
havior is characterized by a smooth change in the fractal
dimension rather than a reduction in the range of scales
over which fractal behavior is observed.

The billiard construction technique [3,12] is shown in
Fig. 1. Within the semiconductor heterostructure, a two-
dimensional sheet of electrons is located at the interface
between the lowest GaAs and AlGaAs layers. The bil-
6802-1 0031-9007�01�87(3)�036802(4)$15.00
liard is defined in this sheet using patterned metallic gates
(light gray) deposited on the heterostructure surface. A
negative gate bias Vg defines tunable depletion regions
(medium gray) that form the billiard walls in the sec-
tions of the electron sheet directly below the gates. This
electrostatic technique produces a two-dimensional poten-
tial well with walls that have an approximately parabolic
energy profile [4] (see Fig. 1, top right). These “soft-
wall” billiards are predicted to generate mixed electron
dynamics [4–7]. Table I summarizes the experimental pa-
rameters for the seven billiards investigated—the area A
enclosed by the billiard, the number of quantized conduct-
ing modes n in the openings [3], the mean free path �, and
the temperature T at which the billiard is measured. We
begin by considering a typical billiard (device e). Cool-
ing the billiard reduces phase-breaking scattering events
and the quantum-mechanical wave properties of the elec-
trons become important. At T � 0.03 K, the character-
istic phase coherence length is 33 times longer than the
billiard width of 1 mm, ensuring that a typical electron
maintains coherence while traversing the billiard. The
ratio S of the billiard width to the electron Fermi wave-
length ��40 nm� is sufficiently large that electron trans-
port within the billiard is semiclassical rather than fully
quantum mechanical. Within a semiclassical picture, the
electron waves accumulate phase as they move along the
trajectories and this determines the wave interference be-
tween pairs of trajectories that form closed loops [8]. We
vary the phase, and hence the interference, by applying
a small magnetic field B perpendicular to the plane of
the billiard [3]. The resulting fluctuations in the magne-
toconductance G�B� are sensitive to the precise distribu-
tion of loop areas in the billiard [3,9–11]. For soft-wall
billiards, the trajectory loop areas are expected to follow
a power-law distribution [4–7]. This has been predicted
[5] to produce fractal conductance fluctuations (FCF)— a
© 2001 The American Physical Society 036802-1
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FIG. 1. Top left: A schematic representation of the billiard.
The layers from surface down are n-GaAs, n-AlGaAs, AlGaAs,
and GaAs. Top right: A simulation of a billiard’s “soft-wall”
potential profile where the potential energy (vertical) is plotted
as a function of physical location in the billiard. Middle:
Schematics of the gate patterns (not to scale) together with
the equivalent scanning electron micrographs for four (a,
b, c, and d) of the seven billiards investigated. The litho-
graphic dimensions (vertical 3 horizontal) are a 30 3 2 mm,
b 2 3 2 mm, c 1 3 1 mm, and d 0.6 3 0.7 mm. All billiard
openings are 0.2 mm wide. Billiards e, f, and g have the same
geometry as b but are different sizes (see Table I). Bottom:
Magnetoconductance fluctuations measured for billiards e, f,
and g (see trace labels) with n � 2 and � � 4.4 mm. From top
to bottom the �T, A� values for the traces are �4.2 K, 1.0 mm2�,
�1.4 K, 1.0 mm2�, �0.48 K, 1.0 mm2�, �0.03 K, 1.0 mm2�,
�0.03 K, 0.36 mm2�, and �0.03 K, 0.16 mm2�. The right-hand
brackets indicate (device, Q, DF) (see text for definitions of Q
and DF). The traces are offset vertically for clarity.

fractal scaling of magnetoconductance fluctuation patterns
at increasingly fine magnetic field scales —and FCF have
since been observed [9–11].

Such fluctuations are clearly visible in the fourth (from
top) trace of Fig. 1. This G�B� trace is measured for device
TABLE I. A summary of the billiard parameters discussed in the text. To investigate a large range of A values, we construct
billiards with different physical areas. Tuning Vg is also used to change A. In particular, the bottom “plunger” gate featured in
billiard d (see Fig. 1) can reduce A to less than 20% of the physical area enclosed by the gates. The opening widths and hence n are
also reduced by increasing Vg. We vary � by constructing billiards using different quality materials. Measurements are performed
for a range of T . See the text for the definition of tq and Q.

Device A �mm2� T �K� � �mm� n tq �ps� Q

a 60.0 0.03 25 4 16.6 0.003
b 4.0 0.03 4.4 2 109.6 0.30
c 1.0 0.03–4.2 12 2– 6 2.8–182.9 0.012–1.99
d 0.22– 0.09 0.03 5.5 2 75.0–87.9 4.34–9.05
e 1.0 0.03–4.2 4.4 2 24.9–113.2 0.02–1.23
f 0.36 0.03–2.5 4.4 2 20.1–98.7 0.08–2.96
g 0.16 0.03 4.4 2 83.4 5.67
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e at T � 0.03 K, where the conduction within the billiard
is in the semiclassical regime (the implications of the low
n value in the openings are discussed later). We emphasize
that the fluctuations are reproducible and are not gener-
ated by measurement noise. The trace exhibits fluctuations
on many magnetic field scales, indicating the potential for
fractal scaling. The remaining traces in Fig. 1 demonstrate
the effect of varying T and A. An increase in T reduces
the electron phase coherence length and is therefore ex-
pected to induce more classical conduction. In contrast, a
decrease in A reduces S and should therefore increase the
importance of purely quantum-mechanical transport pro-
cesses. It is clear from Fig. 1 that the complexity of the
fluctuations decreases by increasing T (moving to the up-
per traces) or reducing A (moving to the lower traces ob-
tained from the smaller billiards f and g). This suggests
that deviations from semiclassical conduction within the
billiard induce a profound change in the scaling properties
of the fluctuations.

To quantify this change, we employ a fractal detec-
tion method known as the box-counting technique [1,2]
where the G�B� trace is covered with a computer-generated
mesh of identical squares. The fractal dimension DF quan-
tifies the scaling relationship between patterns observed at
different magnifications [1,2]. DF is obtained by calculat-
ing the number of occupied squares in the mesh N�DB�
as a function of square size DB. For fractal behavior
[1,2], N �DB� scales according to N�DB� � DB2DF , where
1 , DF , 2. Therefore, by constructing a scaling plot
of logN�DB� against logDB, fractal behavior is detected
as a straight line and quantified by extracting DF from
the gradient. Figure 2 shows a typical scaling plot. The
dashed straight line is a guide to the eye, indicating that the
data follow the fractal scaling relationship over the range
0.35 , DB , 45 mT. The values of the upper and lower
“cutoffs,” DB2 and DB3, are determined using the deriva-
tive plots shown in insets 2(a) and 2(b). DB1 represents
the measurement resolution limit of 0.1 mT. The data re-
main nonfractal up to DB2 due to the dominance of mea-
surement noise over signal for these small fluctuations in
G�B�. DB4 represents the length of the data trace, which
is limited to B , 150 mT due to the emergence at higher
fields of conduction processes that do not generate FCF
036802-2
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FIG. 2. The data (solid line) follow a straight line (dashed
line) between the magnetic field scales DB2 and DB3. The
insets (a) and (b) are derivative plots of the data and (c) shows
the individual data points (for clarity only every tenth point
is plotted).

[10]. The upper cutoff occurs at a lower field scale DB3
because it is necessary to fit at least 49 squares in the mesh
in order to achieve sufficient box-counting statistics to re-
solve the fractal behavior. Inset 2(c) shows the individual
data points within the fractal scaling range. To produce
this plot we employ two refinements to the box-counting
method—the variation method (where the data point den-
sity increases as small DB) and the horizontal structured
elements method (where the density increases at large DB)
[13]. Combining these two methods, we achieve a high
data point density across all DB values, ensuring a reliable
detection of fractal scaling.

Returning to Fig. 1, we use DF to investigate the FCF
evolution during the transition from classical to quantum-
mechanical conduction. As T and A are adjusted to
suppress the semiclassical process, the most anticipated
scenario for the evolution of FCF towards a nonfractal
trace is that the value of DF remains constant while the
range of DB over which fractal behavior is observed
decreases to zero [14]. Instead, Fig. 1 reveals a more
remarkable behavior where the value of DF decreases
gradually towards the nonfractal value of 1 in both the
classical and quantum limits. We now consider all four
adjustable experimental parameters (T, A, n, and �)
for the seven billiards presented in Fig. 1 and Table I.
As demonstrated in Figs. 3(a)–3(d), the plots of DF

(circles) versus T , A, n, and � all have different forms.
However, we find that DF changes in a universal way
when plotted against a more general parameter Q that
quantifies the transition towards resolvable, quantized
energy levels within the billiard. We define Q as the
ratio of the average energy level spacing DES to the
036802-3
FIG. 3. In (a)–(d), tq and DF are plotted against T , A, n, and
�. The tq values (triangles) are plotted along the left vertical axis
while the DF values (circles) are plotted along the right vertical
axis. T , A, n, and � are plotted along the horizontal axis for
(a)–(d), respectively, with A � 1 mm2, n � 2, � � 4.4 mm in
(a); T � 30 mK, n � 2, � � 4.4 mm in (b); T � 30 mK, A �
1 mm2, � � 4.4 mm in (c), and T � 30 mK, A � 1 mm2, n �
2 in (d). In (e), DF is plotted against Q. The lines joining the
data are guides to the eye. The error bars correspond to the
maximum possible uncertainties in DF and Q.

average energy broadening DEB. The condition Q � 0
corresponds to DES � 0 or DEB � `. Q is increased
either by increasing DES or decreasing DEB, improving
the resolution of the discrete energy levels. We calculate
DES by dividing the energy of the highest occupied level
by the total number of occupied energy levels and this
equals 2p h̄2�m�A (where m� is the electron effective
mass) [15]. DEB is given by the quadrature summation
of the billiard’s two characteristic energy broadening
widths —thermal broadening kT and the intrinsic energy
level broadening h̄�tq originating from phase-breaking
scattering events that limit the lifetime tq of the quantum
states [16]. Thus

Q �
DES

DEB
�

�2p h̄2���m�A�q
�h̄�tq�2 1 �kT �2

. (1)

To extract tq from the data, we have used a well-
established technique that analyzes the correlation field
of the data as a function of magnetic field [17]. In
036802-3
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Figs. 3(a)–3(d) (triangles), we demonstrate how tq is
tuned using the four experimental parameters. Reducing
T induces the rise in tq shown in Fig. 3(a). The saturation
at low T is a common observation in semiconductor
billiards [15,17] and in our experiments coincides with
the condition kT , DES. The saturation value of tq

depends on A, which leads to the dependence shown in
Fig. 3(b). In Fig. 3(c), tq decreases for larger values of n
due to an increased coupling to the external environment
[17]. We also find that tq scales with � [Fig. 3(d)]. Thus,
in summary, we vary Q using all four available billiard
parameters: T , A, n, and �. Table I shows the ranges of
Q achieved. In Fig. 3(e), all of the DF measurements
from the seven different billiards are plotted against Q. In
contrast to the distinct forms of the DF variations shown
in Figs. 3(a)–3(d), all of the DF data condense onto a
single “universal” curve when plotted as a function of
Q. Therefore it is clear that Q is a particularly useful
parameter for charting the variations in DF . Moving
from left to right across Fig. 3(e), DF rises and then falls.
This trend can be seen in the raw FCF data by moving
down through Fig. 1. In the extreme limit of Q � 0, DF

assumes the nonfractal value of 1. As Q is increased,
DF rises smoothly until it reaches a peak value of 1.52
at Q � 1. Further increases in Q are accompanied by
a gradual decrease in DF . Extrapolating the downward
trend in DF , we find that to obtain DF � 1 would require
Q � 11. By this stage, the billiard width matches that of
the openings and the device resembles a long quantum
point contact [3].

We note that different billiard shapes and orientations
of the openings were purposely used for the billiards ex-
amined (Fig. 1). Such geometric factors do not affect Q.
Figure 3(e) demonstrates that these factors do not influence
DF either, further supporting our observation that Q is the
relevant parameter for charting the evolution towards non-
fractal behavior. In identifying Q, we emphasize that DF

is determined only by conditions within the billiard rather
than the electron injection properties. Billiard opening pa-
rameters, such as n, only affect DF indirectly through their
effect on tq and therefore Q. Finally, future investigations
will address the effect on DF of varying the softness of
the wall profile. Whereas the heterostructure of Fig. 1 fea-
tures a single sheet of electrons (located �70 nm below
the surface), we are currently fabricating “double-layer”
heterostructures that feature two parallel sheets located at
different depths (�70 and �150 nm) [18]. These inves-
tigations will use a common set of surface gates to de-
fine two nominally identical billiards which, due to their
differing depths, will have different wall softness.

To conclude, we find that FCF are remarkably robust.
Only in the extreme regimes of Q � 0 and Q � 11 do the
fluctuations become nonfractal. The transition to these ex-
tremes is characterized by a smooth decrease in DF from
its peak value at Q � 1. This novel behavior has no simple
explanation. In particular, how the suppression relates to
036802-4
quantum chaos [19,20] and wave-function scarring [21,22]
presents a new challenge to both experimentalists and
theorists.
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