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Loss of Second-Ballooning Stability in Three-Dimensional Equilibria
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The effect of three-dimensional geometry on the stability boundaries of ideal ballooning modes is
investigated. In particular, the relationship between the symmetry properties of the local shear and the
magnetic curvature is addressed for quasisymmetric configurations. The presence of symmetry breaking
terms in the local shear can produce localized ballooning instabilities in regions of small average magnetic
shear which lower first-ballooning stability thresholds and can potentially eliminate the second stability
regime.
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Ballooning instabilities are short wavelength pressure
driven ideal magnetohydrodynamic (MHD) modes [1] that
limit plasma performance. For the stellarator class of
magnetic confinement devices, ballooning stability crite-
ria are often the most restrictive. Ballooning instabilities
are driven by a pressure gradient in a region of configu-
ration space with unfavorable magnetic field curvature.
Since curvature varies on the magnetic surfaces of toroidal
confinement devices, the eigenmode structure tends to lo-
calize on the magnetic surface to facilitate access to the
free energy source. Instability ensues when the destabi-
lizing pressure/curvature drive is more virulent than sta-
bilizing field line bending energy which is influenced by
the local shear of the magnetic field line. The geometry
of the magnetic field lines is important in describing the
eigenmode structure and associated instability properties.
Prior work [2] led to important insights into the nature of
ballooning stability in tokamak configurations. A num-
ber of authors looked at the stability properties of specific
stellarator configurations [3,4], but it is difficult to draw
general conclusions from these studies about the nature of
MHD ballooning stability in three-dimensional configura-
tions. In this paper, we attempt to understand some of the
generic physics of ballooning stability relating to the role
of three-dimensional (3D) magnetic geometry.

A particularly important result of ballooning stability
studies in axisymmetric configurations is the discovery
of the second stability regime [2,5]. A key element in
understanding the physics of the second stability regime
is the role of the local shear [2]. In toroidal configu-
rations, the local shear is influenced by pressure driven
Pfirsch-Schlüter effects. To minimize the stabilizing effect
of field line bending, the most unstable ballooning mode
eigenfunctions reside in regions of small local shear. For
the small pressure gradient, the low shear region lies on
the large major radius side where the curvature is unfa-
vorable. At higher pressure gradient, the region of small
local shear moves away from the bad curvature region to-
wards a region on the magnetic surface with favorable cur-
vature. Consequently, at sufficiently high enough pressure
gradient, the pressure modification of the stabilizing field
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line bending energy overcomes the destabilizing curvature
drive, and the ballooning mode is stabilized. Typically,
this second stability regime is limited to regions with small
averaged magnetic shear; however, axisymmetric shaping
and the aspect ratio affect quantitative estimates of the sta-
bility boundary. Consequently, tokamaks with weak or re-
versed magnetic shear have very good ballooning stability
properties. As is shown in the following, the presence of
symmetry breaking effects can have a dramatic impact on
the “second stable” region.

The difficult aspect of appreciating the role of three-
dimensional shaping on ballooning instability is the
generation of the equilibria themselves since there is no
general prescription for the complete specification of 3D
magnetostatic equilibria in a toroidal domain with concen-
tric toroidal flux surfaces (surfaces upon which magnetic
field lines lie). However, a method was developed [6] to
generate a sequence of three-dimensional equilibria in a
region localized to a magnetic surface; this generalizes
previous work on local solutions to the Grad-Shafranov
equation on asymmetric flux surfaces [2,7,8]. By appli-
cation of this technique, one is able to calculate stability
boundaries for modes localized to magnetic surfaces as
functions of shaping and profile parameters. A particularly
useful form for this analysis technique is the generation of
stability boundaries as measured by ŝ 2 a curves, which
are prominently used in tokamak research, where ŝ and a

are dimensionless measures of the flux surface averaged
magnetic shear and pressure gradient, respectively [1,2].
Stability curves in an ŝ 2 a space can be generated for
the prescribed three-dimensional equilibria as well [9].

A local 3D equilibrium is given by the specification of
two flux surface profile quantities, the rotational transform
io and the magnetic coordinate mapping X�u,z � on the
magnetic surface of interest c � co , where u and z are
any straight field line poloidal and toroidal angles. The
choice of X is not completely free; it must satisfy con-
straints. The interested reader is referred to Ref. [6] for
a detailed discussion of the local model. It is often con-
venient to specify the pressure gradient dp�dc and the
averaged magnetic shear di�dc on the surface as the two
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free flux functions [2]. However, other choices are pos-
sible [6].

It is useful to distinguish X�u, z � from the profiles as
a fundamental way to describe the local equilibria. The
choice of X�u, z � and io determines the magnetic field
line trajectory and the magnetic surface shape in three-
dimensional space. From this parametrization, one can
deduce purely geometric properties of the magnetic field.
In particular, the normal curvature [kn � n̂ ? �b̂ ? =�b̂]
and geodesic curvature [kg � b̂ 3 n̂ ? �b̂ ? =�b̂], which
play crucial roles in describing the ballooning free energy
source, are derivable from the coordinate mapping [6].
Here b̂ � �≠X�≠z 1 io≠X�≠u��j�≠X�≠z 1 io≠X�≠u�j
and n̂ � �≠X�≠u 3 ≠X�≠z ��j�≠X�≠u 3 ≠X�≠z �j de-
note the unit directions along the magnetic field and normal
to the magnetic surface, respectively. In addition, the
normal torsion of the magnetic field line is also specified
by X and given by tn � 2n̂ ? �b̂ ? =�b̂ 3 n̂. The torsion
is related to the local shear s � �b̂ 3 n̂� ? = 3 �b̂ 3 n̂�
by the identity

s �
J ? B

B2 2 2tn , (1)

where n̂ ? = 3 n̂ � 0 is used. Variations in the normal
torsion and the Pfirsch-Schlüter current within the flux sur-
face influence the local shear. The parallel current consis-
tent with the quasineutrality equation is given by

J ? B
B2 � s 1

dp

dc
l , (2)

where s � �J ? B���B2� is the total flux surface aver-
aged parallel current, dp�dc is the pressure gradient, and
the Pfirsch-Schlüter coefficient l is determined from solu-
tions to

B ? =l � 2
j=cj

B
kg , (3)

where j=cj�B � j�≠X�≠u 3 ≠X�≠z �j�j�≠X�≠z 1

io≠X�≠u�j and kg are determined from geometric input.
Equations (1)–(3) show that geometric properties domi-
nantly describe the local shear for low current stellarators.

To consider a specific case, the jBj structure of the
configuration studied in the following is presumed to be
dominated by a single Fourier harmonic. The practical im-
portance of this symmetric case is that single particle orbits
are integrable and hence the neoclassical transport proper-
ties of these configurations are favorable [10]. However,
deviations from symmetry enhance neoclassical transport
in high temperature devices. In the following, the ef-
fect of symmetry breaking contributions is shown to have
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important implications for ballooning stability boundaries
as well.

The following parametrization is used to crudely model
a quasihelically symmetric system [11] in a particular
asymptotic limit. Studies of the helically symmetric
experiment (HSX) indicated a low threshold for ideal bal-
looning instability [4]. In this approximate limit, the nor-
mal and geodesic curvatures are given by kn � cos�Nz 2
u� and kg � sin�Nz 2 u�, where N denotes the
toroidal periodicity. From Eq. (3), assuming j=cj�B �
f�Nz 2 u� on the magnetic surface, the Pfirsch-Schlüter
coefficient is dominated by the same magnetic harmonic,
l � cos�Nz 2 u�. While the curvatures are dominated
by a quasisymmetric spectrum, in general, there is no
reason to believe that the normal torsion should also
be quasisymmetric. The normal torsion is described by
tn � tn�Nz 2 u, Nz � along a magnetic field line and is
field line dependent. Because of Eq. (1), this will impact
the local shear and the ballooning stability properties.

As a particular example, we introduce a local helical axis
configuration specified by a small number of parameters.
The coordinate mapping in cylindrical coordinates is writ-
ten X�u, z � � �R, f, Z� � �R�u, Nz �, 2z , Z�u, Nz ��
with

R � Ro 1 ro cosu 1 D cos�Nz 2 u� ,

Z � ro sinu 1 D sin�Nz 2 u� .

In the asymptotic limits N2D�Ro ¿ 1 . ND�Ro ,
ro ø Ro , the helical curvature dominates the toroidal
curvature, kn 	 2�N2D�R2

o� cos�Nz 2 u�, and kg 	
2�N2D�R2

o� sin�Nz 2 u�. For the normal torsion we
include corrections due to symmetry breaking terms of
order O �ND�Ro� and find tn 	 io�Ro 2 �N3D�R2

o� 3

cos2�Nz 2 u� 2 �ND�Ro� cos�Nz �. Although the as-
ymptotic limit studied is somewhat artificial, it does
represent a particularly interesting case that allows one to
identify crucial geometric information and is somewhat
generic to quasisymmetric systems. An additional prop-
erty, consistent with the ordering, is that the surface under
investigation is stable to Mercier modes. While Mercier
properties are known to influence ballooning stability in
stellarators [12], we do not include it in this paper.

As in axisymmetric systems [1], ballooning theory for
three-dimensional configurations relies on the use of an
eikonal or WKB approach to describe the behavior on
disparate length scales [13]. In particular, the linear ideal
MHD perturbations are written J�x� � j�x�eiS�x��e ,
where e ø 1 and the factor S�x� satisfies B ? =S � 0.
By using the eikonal form, the lowest order description of
the mode structure is governed by the ballooning equation,
which can be written, for the example equilibria, as
≠

≠h
�1 1 L2�

≠j

≠h
1 a�cos�h� 1 L sin�h��j � 2V2�1 1 L2�j , (4)

where the angle coordinate h � Nz 2 u labels points along the field line,

L �
Z h

hk

dh �ŝ 2 a cos�h� 1 to cos�2h� 1 d cos�kh 1 kx�� , (5)
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is the integrated local shear, a � 2�dp�dc� 3

N2DroV̂ 0�R2
o�N 2 io�2 is a measure of the pressure gra-

dient, to � N3D2�2R2
o�N 2 io�, d � ND�Ro�N 2 i�,

and the factor V̂ 0 �
H

�dl�B� �4p2�21 is an overall nor-
malization factor [6]. The fact that k � N��N 2 io�
in the last term of Eq. (5) is irrational if io is irra-
tional has implications for ballooning stability. Finally,
x � u 2 ioz is a field line label. The quantity ŝ �
�di�dc� �r2

oRo�V̂ 0�N 2 io�� is the normalized averaged
shear which is a free variable in the local equilibrium
model. [Note that, from Eq. (2), one can exchange
the specification of di�dc with the choice of averaged
current so at the surface.] With the boundary conditions
j � 0 as jhj ! `, the ballooning equation becomes an
eigenvalue equation for the normalized frequency V2,
with V2 , 0 indicating instability.

In the limit to � d � 0, the above ballooning equation
is identical to the sharp boundary shifted circle equilibrium
used in axisymmetric studies [1], except for the scaling
factor io��io 2 N� multiplying the connection length that
enters only into normalizing a and ŝ. In Fig. 1, the ideal
ballooning stability boundaries are shown for this case with
both first and second stability regions. The effect of the
term proportional to to alters the stability curves quanti-
tatively; however, the same general features as the to � 0
case (two stability boundaries, stability at ŝ � 0) are seen
since this case does not introduce symmetry breaking ef-
fects into the ballooning equation.

A more novel effect on ballooning instability is seen
when the symmetry breaking contribution to the local shear
as described by the term proportional to d is present. In
Fig. 1, the stability curves corresponding to nonzero d
show that there is a deterioration of the second stability
regime, and for large enough d there is only one balloon-
ing stability boundary for a given value of ŝ. Note that
ballooning instability can exist at ŝ � 0 and the variation
of the local shear generally determines stability boundaries
in the small ŝ region.

FIG. 1. Ideal MHD stability boundaries of the ballooning
equation, Eq. (4), with to � 0, k � p2�8, and x � 0 with
different values of the symmetry breaking factor d. The solid,
dotted, dashed, and dash-dotted curves correspond to d � 0,
0.15, 0.30, and 0.45, respectively.
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The effect of incommensurate helicities in three-
dimensional equilibria has been studied by Cuthbert and
Dewar [14]. They point out that, when incommensurate
helicities are present, ballooning mode eigenfunctions can
be localized along the magnetic field lines even when ŝ
is small. This behavior resembles the Anderson localiza-
tion process [15] of solid state physics, where electron
transport is inhibited by localized electron wave functions
due to the presence of impurities on a periodic lattice.
In Fig. 2, plots of the ballooning mode eigenfunctions
corresponding to that obtained with the same values of
a and ŝ, but with varying levels of d, demonstrate the
localizing effect of the symmetry breaking term in the
local shear.

A considerable amount of work in the stellarator
community has been spent on three-dimensional con-
figurations with quasisymmetry since the predicted
neoclassical transport at high temperature is considerably
better than conventional stellarators [10]. In quasisym-
metry systems, a prominent harmonic dominates the
magnetic field spectrum and hence the components of
the curvature and Pfirsch-Schlüter spectrum. However,
these approaches do not address the symmetry properties
of the local shear, which we show can have dramatic
consequences for ideal ballooning stability. In particular,
for the standard configuration discussed in Ref. [4], the
stability curves, as calculated using the technique of
Ref. [9] and shown in Fig. 3, are qualitatively similar to
the academic example of Fig. 1. In both cases, there are
instability regions that cross ŝ � 0 and a corresponding
loss of “second stability.” The region in profile space with
small ŝ is of considerable practical applicability for many
stellarator applications. An important conclusion from
this paper is that the helical content of the local shear
determines ballooning stability boundaries in this regime.

The stability boundaries as deduced from solutions to
Eq. (4) are often used to predict stable operating regimes

FIG. 2. The ballooning mode eigenfunctions for a � 0.5 and
ŝ � 0.05 for varying values of d. The solid, dotted, dashed, and
dash-dotted curves correspond to d � 0, 0.15, 0.30, and 0.45,
respectively. For higher values of d, the ballooning eigenfunc-
tions are more localized along the field line and the growth rates
increase.
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FIG. 3. The stability boundaries constructed for the standard
HSX configuration studied in Ref. [4]. The plot is constructed
by fixing the magnetic geometry and allowing the two profile
functions to vary at the magnetic surface following the prescrip-
tion of Ref. [9]. The box indicates the position in profile parame-
ter space of the initial equilibrium.

in magnetic configurations. However, Eq. (4) describes
only the leading order solution to the linearized ideal MHD
equations using the ratio of the disparate length scales as
an expansion parameter. To completely specify the mode
structure, one must examine the next order solution which
introduces a second eigenvalue problem for the global
solution. In axisymmetric systems, the next order solution
is integrable and the resultant eigenvalues can be related
to the eigenvalues of the local solutions [1]. In three-
dimensional equilibria, the higher order solution is
nonintegrable in general and constructions of the global
solutions are problematic [13]. Since the stability bound-
aries in Fig. 1 are dependent upon three-dimensional
geometric effects, one might speculate that these limits
are overly pessimistic.

In this Letter, we point out the importance of the sym-
metry breaking effects of the local shear on the ideal MHD
ballooning stability properties. Using a recently developed
technique for generating sequences of local three-
dimensional equilibria which allows for easy manipula-
tion of 3D shaping and profile plasma profiles, one is able
to create generalized ŝ 2 a plots for generic equilibria
showing stability boundaries as functions of equilibrium
parameters. The work suggests that, generically, the
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presence of symmetry breaking components in the local
shear of quasisymmetric configurations can reduce ideal
MHD stability threshold conditions and eliminate second
stability regimes. For particular configurations, one needs
to perform more quantitative calculations for instability
threshold predictions. However, one can hopefully use the
understanding developed here to construct more robustly
stable stellarator configurations.
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