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Space charge can lead to emittance and/or energy exchange known as “equipartitioning issue” in
linacs, or space-charge coupling in high-current synchrotrons. It is described here as an internal reso-
nance driven by the self-consistent space-charge potential of coherent eigenmodes. By a detailed com-
parison of analytical theory with 2D particle-in-cell simulation for Kapchinskij-Vladimirskij (KV) and
waterbag distributions, we discuss characteristic features of this resonance mechanism in the vicinity of
the symmetric focusing resonance band— for practical purposes, the most important case —and discuss
the applicability of the linearized KV theory.
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The issue of energy/emittance exchange in space-charge
dominated beams is of increasing interest in connection
with new projects of high-power proton linear accelerators
as well as high-current synchrotrons. In recent simu-
lation studies of 3D bunched linac beams, it was shown
that nonequipartitioned beams are not subject to energy/
emittance exchange in certain regions of parameter space,
while in other regions (associated with internal reso-
nances) energy exchange in the direction of equipartition
is inevitable [1]. The underlying mechanism—noting
that Coulomb (intrabeam) scattering is too slow —is
collective oscillations of the space-charge density that
creates nonlinear forces similar to those of magnetic
sextupoles or octupoles and leads to the possibility of
resonant coupling. A self-consistent description of this
mechanism of collectively driven resonances has first
been proposed in Ref. [2] using a Vlasov perturbation
approach to the anisotropic 2D Kapchinskij-Vladimirskij
(KV) distribution. Exponential growth of properly defined
eigenmodes of density oscillations provides the source
of coupling. In realistic non-KV beams, the required
nonlinearity may be already present in the initial distri-
bution which enhances the speed of the exchange. The
successful comparison of KV theory with the 3D simu-
lation cases in Ref. [1] has in part motivated the present
2D simulation study, which aims at a detailed analysis
of the range of validity of the linearized KV theory as
well as the effect of a realistic distribution function.
Furthermore, the present 2D study may be of direct rele-
vance to explore coherent space-charge resonances and
beam halos in synchrotrons and proton driver rings — a
subject recently addressed by different authors [3–5]. We
focus on an extended region around the case of symmetric
focusing constants which appears to be the practically
most significant resonance. This expands the well-known
single particle “Montague resonance” [6] to the self-
consistent coherent case and establishes its equivalence to
the corresponding 3D linac resonance. Furthermore, our
study clarifies issues on equipartition and thermodynamics
raised in recent literature by Kishek et al. [7].
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The basis of our comparison is the analytical calculation
of growth rates for leading order eigenmodes from the dis-
persion relations in Ref. [2], which are based on perturba-
tions of the anisotropic KV distribution in transverse phase
space,
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in a constant focusing system with arbitrary focusing ratio
and emittance ratio. The (initially) decoupled Hamiltoni-
ans, H0x, H0y , are constants of the motion; a is the beam
radius in x (similarly b in y) and nx, ny the correspond-
ing betatron tunes. The energy anisotropy T is the ratio
of oscillation energies in x and y which can be written for
harmonic oscillators as
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Solution of the linearized Vlasov equation leads to disper-
sion relations for eigenmodes with space-charge potentials
expanded in polynomials in x and y. Eigenmodes are char-
acterized by the order of the polynomial, and exponential
instability is found in certain regions of parameter space.
As the unperturbed KV beam has no coupling, some small
initial density fluctuations lead to finite nonlinear coupling
forces if the eigenmode grows exponentially. Note that
the energy anisotropy leads to a substantial increase in the
number of eigenmodes for given order compared with the
isotropic KV theory [8] or —even more—with fluid mod-
els [9].

Solutions of the dispersion relations can be plotted
in terms of the betatron tune ratio nx�ny (for unequal
emittances different from the zero space-charge tune ratio
n0x�n0y� which relates to the appearance of resonance,
and the tune depression in one direction as a measure for
space charge. Results are shown in Fig. 1 for an emittance
ratio ex�ey � 2, and constant tune depression in the more
space-charge dominated y direction, here ny�n0y � 0.8.
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FIG. 1. Analytic instability growth rates (normalized) for con-
stant ny�n0y � 0.8 and ex�ey � 2 as a function of the betatron
tune ratio, and for different modes up to fourth order.

Small markers relate to oscillatory modes (Rev fi 0),
big markers to nonoscillatory modes (Rev � 0). Note
that the width of the stop band 0.91 & nx�ny & 1.1 is
quite symmetric about the tune ratio unity, where all rates
vanish; writing it in terms of the zero space-charge tune
ratio, 0.88 & n0x�n0y & 1.02, it is unsymmetric due to
the space-charge tune shift. Growth rates are in units
of n0y ; hence, the typical growth rate of 0.03 in Fig. 1
corresponds to �2p0.03�21 � 5.3 zero space-charge
betatron wavelengths in the y direction. The dominant
modes appear to be of fourth order, which would suggest
a resonance condition 2nx 2 2ny � 0 in the limit of
small space charge. This resonance was the subject of
the single-particle approach by Montague from which it
was concluded that equal tunes need to be avoided in a
synchrotron [6]. Our self-consistent approach includes the
time evolution of the corresponding mode; furthermore
it shows, perhaps unexpected, the appearance of unstable
third order modes for nx�ny * 1, which in a single-
particle model would appear only near 2nx 2 ny � 0, or
nx 2 2ny � 0. In addition, Fig. 1 indicates also instabil-
ity of a second order “skew” or “tilting” mode driven by
a space-charge xy term if the conditions nx�ny . 1 and
n0x�n0y , 1 are satisfied (for details see Ref. [2]).

To explore the significance of these resonances, we
have employed a standard 2D particle-in-cell code with
105 simulation particles in a rectangular conducting
boundary sufficiently far away from the beam. It is essen-
tial for KV simulations with many particles to initialize
the simulations with finite (but still small) initial density
fluctuations for all modes under consideration. A quiet
start technique, likewise a very large number of randomly
chosen particles, causes artificial delay of the onset of
modes which can be avoided by imprinting on the uniform
initial density a random fluctuation spectrum at the percent
level. We have carried out simulations with initial KV
as well as rms (but not intrinsically) matched waterbag
distributions (WB) for the same parameter range as in
034802-2
Fig. 1. In Fig. 2 we show typical examples of dynamical
evolution of rms emittances at tune ratios— slightly
different for KV and WB—where the emittance exchange
is maximum. It is noted that for the KV beam this occurs
for symmetric focusing with full equipartitioning (equal
emittances in Fig. 2); the WB shows visible overshoot
beyond equipartition for a slightly smaller tune ratio and
leads to a final emittance ratio 0.8. It should be noted that
the stability of the saturated emittances is consistent with
theory since for ex�ey � 0.8 the growth rate graphs are
inverted about nx�ny � 1 and reduced in width; hence,
no unstable modes are covered. Also, this overshoot is
restricted to a small interval of tune ratios at 1.05 6 0.01.
The simulation growth rates found compare well with
the analytical predictions of maximum e-folding times of
about five betatron periods.

Results for the saturated rms emittance growth in each
plane are given in Fig. 3. For the KV case, the full stop
band width is in excellent agreement with the analyti-
cal one. The predicted absence of emittance exchange
for nx�ny � 1 is also confirmed by the simulation. Left
from this point, the emittance transfer is, perhaps surpris-
ingly, into the direction of the originally larger emittance
(x). The maximum exchange is reached at n0x�n0y �
1�nx�ny � 1.073�, where the tilting mode ceases to be un-
stable by theory. For the WB, emittance transfer is limi-
ted to an even narrower stop band, though with different
features. The left edge of the stop band coincides with
the disappearance of nonoscillatory modes for nx�ny &
0.96; likewise, only negligible emittance exchange is found
for nx�ny * 1.073. At this symmetric focusing, and for
slightly smaller tune ratio, the WB is characterized by the
appearance of the tilting mode: emittances are periodically
exchanged between x and y, similar to a second order dif-
ference resonance driven by skew quadrupoles. There is
only a small irreversible approach to equipartition which
is indicated by the markers. These simulations suggest that
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FIG. 2. Evolution of rms emittance growth factors for initial
KV (solid line) with nx�ny � 1.073, and WB (dotted line) with
nx�ny � 1.06. Units on the abscissa are betatron periods in y
in the absence of space charge.
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FIG. 3. Simulation results for initial KV (top) and WB (bot-
tom) distributions (ny�n0y � 0.8, ex�ey � 2) as a function of
the tune ratio (dashed vertical line: symmetric focusing).

for realistic beam models (such as WB) only nonoscil-
latory modes contribute to emittance exchange, whereas
oscillatory modes appear to be ignorable. A possible
explanation might be that in non-KV beams a finite spread
of single-particle frequencies leads to Landau damping
and suppression of instability only for modes oscillat-
ing with a frequency near the proper harmonic of single-
particle frequencies, whereas nonoscillatory modes remain
unaffected.

We have compared this with a semi-Gaussian (SG)
distribution —uniform in real space, Gaussian in velocity
space— and found a behavior nearly symmetric about the
tune ratio 1.05—very close to that of the WB below 1.05.

Analytical growth rates for stronger tune depression
show a quite similar distribution of modes as in Fig. 1 as
long as ny�n0y * 0.5, besides overall increasing values
for the rates and broadening of the stop band. In Fig. 4
(ny�n0y � 0.5) we compare WB simulation growth factors
with analytical rates by plotting the maxima of growth rates
(without detailed mode distinction) including all modes as
well as those from only nonoscillatory modes. These simu-
lation results confirm the observation made above that
non-negligible emittance transfer is limited to the nonoscil-
latory modes: for nx�ny � 0.75 in Fig. 4, where the oscil-
latory fourth order mode adopts its maximum growth rate,
034802-3
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FIG. 4. Emittance growth factors (units De�e) for WB simu-
lation compared with maximum analytical growth rates (units as
in Fig. 1) for ny�n0y � 0.5, ex�ey � 2; dashed vertical line is
symmetric focusing.

we have found only 4% emittance growth in y, and 1%
decrease in x. As this occurs right at the beginning of the
simulation, we attribute this small effect to the conversion
of nonlinear field energy for which theory predicts, at this
tune depression, 2% emittance growth in both planes of
an rms matched WB beam of circular cross section [10].
For the KV simulation of the same case, the emittance
change is somewhat larger (�3 times), but in the opposite
direction. It is close to that found in Fig. 3 for the corre-
sponding point, nx�ny � 0.94, where the same oscillatory
fourth order mode adopts its maximum growth rate.

Similarly, the large growth rates of oscillatory modes
at the right end of the stop band (beyond symmetric fo-
cusing) do not lead to noticeable emittance transfer in the
simulation. We use these conclusions to define “effective
stop bands” from the analytical dispersion relations by ig-
noring contributions from unstable oscillatory eigenmodes.
This expands the stable regions visibly for a small emit-
tance ratio; for ex�ey � 5 or larger, the unstable regions
of oscillatory modes are already contained inside those of
nonoscillatory modes and the distinction “effective stop
bands” becomes unnecessary. A further important find-
ing is the absence of additional stop bands for higher than
fourth order modes in the simulation. In particular, Fig. 4
shows that there is no evidence of emittance transfer for the
WB simulations near tune ratios nx�ny � 2�3, 3�2, where
fifth order stop bands could be expected (the KV simula-
tion, instead, has indicated weak resonances).

In Fig. 5 we show the overall picture of these effec-
tive stop bands for different emittance ratios. Growth rates
pertain to the maxima of all nonoscillatory modes of ei-
ther second (tilting), third, or fourth order. Maxima be-
come as large as one (zero space charge) betatron period
for large tune depression and emittance ratio (bottom of
Fig. 5). Note that the parameter range of circular accel-
erators is typically limited to ny�n0y . 0.9 (stop bands
in Fig. 5 actually extend to the zero space-charge limit at
034802-3
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FIG. 5. Stability charts with analytically calculated effective
stop bands (only nonoscillatory modes) for arbitrary ny�n0y
(ordinate), tune ratios nx�ny (abscissa), and different emittance
ratios. Growth rates (grey scales in equidistant steps) in units of
zero space-charge betatron tune (in y).

nx�ny � 1, with growth rates and widths decreasing to
zero, which is not resolved by the discrete steps of the
contour plots); in high-current linacs the range of interest
is typically 0.5 , ny�n0y , 0.8, where y should stand for
the direction in which the linac bunch emittance is smaller.

The effective stop band at tune ratio nx�ny � 1 van-
ishes completely for ex�ey � 1 due to vanishing energy
anisotropy. Likewise, the stop band at tune ratio 1�2
disappears for ex�ey � 2. The resonance structure gets
lost below a sufficiently strong tune depression, depend-
ing on the emittance ratio, due to a complete overlap with
034802-4
neighboring resonance bands. For the large emittance ra-
tio of five the resulting “sea of instability” is raised to
ny�n0y & 0.5, with a strong contribution to the growth rate
from the overlapping band of third order modes originating
at nx�ny � 0.5. In this region approach to equipartition is
predicted for all tune ratios. It is noted that growth rates
drop to zero when approaching the space-charge limit. For
ny�n0y � 0, betatron tunes in both planes vanish; hence,
any coupling occurs at zero rate.

The finding of energy exchange confined to resonance
stop bands for both the KV and WB (also SG) beams clari-
fies that equipartition is not the natural state towards which
real beams evolve as suggested in Ref. [7] in the context
of symmetric focusing. We find, instead, that for moderate
tune depression and not excessive emittance ratios —
pertinent to most applications — the area of parameter
space where anisotropic beams resist equipartition is
actually the dominant one. Our 2D studies give strong
support for the thesis that “islands of stability” for realistic
beams are well described by regions where growth rates
from nonoscillatory KV modes of second, third, or fourth
order are absent. The relatively weak influence of the
shape of the distribution function on the extent of the
stable regions may be understood by appreciating that
the primary source of free energy driving the resonances
is the amount of anisotropy between different degrees
of freedom, and not the distribution of energies within
a degree of freedom. These conclusions reaffirm the
proposal by Jameson [11] to use these stability regions for
the design of nonequipartitioned high intensity linacs.
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