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Experimental Demonstration of the Fermi-Pasta-Ulam Recurrence
in a Modulationally Unstable Optical Wave
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Through a detailed spectral analysis of the propagation of square-shaped laser pulses in optical fibers,
we provide the experimental demonstration of the Fermi-Pasta-Ulam recurrence phenomenon in modu-
lationally unstable optical waves ruled by the nonlinear Schrödinger equation.
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Modulational instability (MI) is a fundamental and ubiq-
uitous nonlinear phenomenon that pertains to a large vari-
ety of subfields of physics such as solid-state physics, fluid
dynamics, plasma physics, and nonlinear optics. It refers
to a process in which a nonlinear and dispersive continu-
ous wave breaks up into a periodic train of localized wave
packets. This process is conveniently interpreted in the
spectral domain as resulting from energy transfers between
the fundamental mode that constitutes the initial continu-
ous wave and higher-order Fourier modes. In the early
1950s Fermi, Pasta, and Ulam (FPU) numerically stud-
ied this type of energy transfer between spectral modes
in the general context of nonlinear discrete systems [1].
The scope of their investigation was to study the long-term
behavior of a chain of coupled nonlinear oscillators ini-
tially excited in its fundamental Fourier mode. They ini-
tially expected that the nonlinear coupling between the
modes would lead to an equipartition of energy between
them. However, they observed in their numerical simu-
lations that, instead of leading to the “thermalization” of
the system, the energy transfer process involves only a few
modes and is reversible in the sense that after a sufficiently
long time the system nearly goes back to its initial state.

The discovery of this unexpected behavior, which is now
known as the FPU recurrence phenomenon, had a deep
impact on the development of modern nonlinear science
because it revealed that, contrary to prevalent beliefs, ther-
malization is not a universal scenario in nonlinear systems.
In particular, it led a decade later to the formulation of the
soliton concept by Zabusky and Kruskal in the study of the
Korteweg–de Vries (KdV) equation resulting from a con-
tinuum approximation of the FPU nonlinear lattice prob-
lem [2].

Since then, many nonlinear wave equations relevant to
a large variety of physical contexts were shown to ex-
hibit FPU recurrence. Among these models, the nonlinear
Schrödinger (NLS) equation plays a central role because of
its ubiquity in almost all branches of physics. In the con-
text of hydrodynamics, Benjamin and Feir [3] have shown,
through a linear stability analysis of deep water waves, that
the NLS equation exhibits MI. The study of the dynami-
cal properties of NLS-MI was subsequently performed by
means of a truncated three-mode Fourier expansion tech-
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nique [4]. Although this technique accounts only for the
interaction between the initial mode and the two first sym-
metric sideband modes of the modulated wave, it predicts
FPU recurrence for the long-term behavior of MI. The
theory of FPU recurrence in the NLS equation was com-
pleted and closed afterwards by Akhmediev et al. [5] who
derived exact analytical periodic solutions that represent
the evolution of initially continuous waves.

In contrast with the large number of theoretical studies,
experimental demonstrations of FPU recurrence are very
rare. This situation is due to the difficulties encountered
in practice to maintain the model equations valid over the
long durations that characterize the recurrence dynamics.
One of the major problems is that FPU recurrence is pre-
dicted in conservative systems while any practical system
exhibits dissipation. Another issue is the perturbative role
played by cumulative higher-order nonlinear effects that
are neglected in the theoretical models. As a result, FPU
recurrence has been experimentally demonstrated only in
very few systems [6]. Demonstrations were performed in
electrical networks and in plasmas for the KdV equation,
while for the NLS equation FPU recurrence was only ob-
served a little more than 20 years ago in the field of hydro-
dynamics [7] despite the universality of this generic model
in physics. Nonetheless, as regards the practical issue of
the long-term validity of the NLS model, nonlinear op-
tics appears to be a promising field of investigation of the
FPU recurrence phenomenon because of the availability of
low-loss silica optical fibers in which light propagation is
accurately ruled by the NLS equation over long distances.
Our aim in the present Letter is to show that FPU recur-
rence of the NLS equation can indeed be demonstrated
experimentally in a remarkably convincing way in silica
optical fibers.

Although the low-loss and pure Kerr nonlinearity of sil-
ica have led to numerous experimental studies of MI in
fibers [8], FPU recurrence has never been demonstrated in
optics up to now. The reason for this failure is the existence
of competing nonlinear effects that invalidate the NLS
model over long distances. The Brillouin scattering, which
is the most detrimental of these effects, is simply avoided
in practice by studying MI in laser pulses instead of con-
tinuous wave (cw) signals. Provided the pulse spectrum
© 2001 The American Physical Society 033902-1
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is broader than the Brillouin scattering bandwidth, the in-
tensity threshold for this effect can be increased above the
pulse intensity. Though this solution is well adapted to
the study of MI in the first stage of its evolution [8], the
spectral complexity inherent to the pulse profile prevents
us from studying FPU recurrence. Indeed, as we shall see,
FPU recurrence involves a delicate balance in the energy
transfers between a significant number of spectral modes
and thus requires spectral purity. To understand this, let us
point out that the gain and the characteristic frequency of
MI are both strongly dependent on the intensity of light.
In a Gaussian-like laser pulse, there is a continuous distri-
bution of intensity levels that is thus associated with dif-
ferent MI gains and frequencies, which unavoidably leads
to spectral complexity and destroys the FPU process, as
shown in Fig. 1.

In order to overcome this difficulty, we considered for
our experiment the use of large square-shaped laser pulses.
The large plateau (�550 ps) of these pulses makes them
truly quasi-cw signals in the sense that the effects of the
rising and trailing edges (�100 ps) are negligible, contrary
to what happens in Gaussian-like pulses. In this way, it is
possible to observe FPU recurrence that is predicted for
pure cw signals. This is illustrated in Fig. 1 where we
compare the evolution of a Gaussian pulse and a square
pulse of identical full width at half maximum (FWHM).
These simulations are obtained by solving numerically the
NLS equation with realistic coefficients corresponding to
the standard telecommunication silica fiber chosen for our
experiment

≠E
≠z

� 2i�2b2
≠2E
≠t2 1 igjEj2E , (1)

where E is the electric field envelope, z is the propagation
distance, t is the time in a reference frame traveling at the
group velocity of light, b2 � 221 ps2 km21 is the disper-
sion coefficient, and g � 2pn2�lAeff � 1.4 W21 km21

is the nonlinear coefficient, where l � 1551 nm is the
wavelength of light, Aeff � 87 mm2 is the effective core
area of the fiber, and n2 � 3.05 3 10220 m2 W21 is the
nonlinear index coefficient.

We plotted in Fig. 1 the envelopes of both types of
pulse at 0.5, 1, and 1.5 recurrence period. As can be
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FIG. 1. Envelope evolution over 1.5 recurrence period of (a) a
square pulse and (b) a Gaussian pulse with equal initial peak
power (2.3 W) and duration (�550 ps).
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seen, recurrence occurs over almost all the plateau of the
square pulse while complex nonrecurrent dynamics de-
velop across the entire Gaussian pulse width. This property
of the square-shaped pulse is rather general and occurs as
long as its rise and fall times as well as the MI period are
sufficiently shorter than its plateau. We can thus conclude
that the use of square pulses ensures an effective cw regime
that allows us to demonstrate the theoretical predictions
drawn from the NLS equation with cw initial conditions.

The square pulses that constitute the keystone of our
experimental demonstration of FPU recurrence are gener-
ated by means of the nonlinear optical fiber loop mirror
(NOLM) [9] sketched in Fig. 2. The NOLM is nothing
but an all-fiber Sagnac interferometer, which consists of
a fiber loop closed on the two output ports of a balanced
(50:50) fiber coupler. When a cw signal is launched in
the loop through one of the input ports of the coupler
(called the NOLM input port), it is entirely reflected back
through that port. Partial transmission through the other
input port of the coupler (i.e., the NOLM output port) can,
however, be obtained if we break the symmetry between
the clockwise and counterclockwise optical paths in the
loop. This is done in our experiment by injecting an in-
tense control pulse of different wavelength in the loop. The
control pulse copropagates in the loop with the clockwise
cw signal that, through cross-phase modulation, accumu-
lates locally an additional phase shift along the fiber loop.
On the other hand, the nonlinear phase shift imparted on
the counterclockwise cw signal remains negligible since it
counterpropagates with the control pulse. The clockwise
cw signal acquires a nonlinear phase shift over the portion
of its envelope that has been superimposed with the control
pulse. This portion is determined by the walk-off time ac-
cumulated between the signal and the control pulse along
the loop due to their group velocity difference. In our ex-
periment the NOLM-input low-power cw signal (�8 mW)
is emitted by a distributed feedback semiconductor laser
tuned to 1551 nm, while the high-power control pulses
are emitted at 1064 nm with a FWHM of 120 ps by a
mode-locked Nd:YAG laser. The loop length is of 360 m,

FIG. 2. Experimental setup: square-pulse generator and fiber
line. Inset: measured output square-pulse profile (solid line) and
profile obtained after deconvolution (dashed line).
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which yields a walk-off time of 540 ps corresponding to a
standard fiber dispersion. This time represents the duration
of the signal transmitted by the NOLM. Maximum trans-
mitted intensity is obtained when the nonlinear phase shift
reaches the value of p. We verified experimentally that
the peak power of the control pulse corresponding to this
situation is of 17 W. The transmitted square pulses were
measured with a fast photodiode (response time of �70 ps)
and displayed on a 50-GHz-sampling oscilloscope. The
inset in Fig. 2 shows the measured square-pulse profile as
well as the profile obtained after deconvolution with the
impulse response of the photodiode.

Once the square pulses are generated from the NOLM,
they are amplified through an erbium-doped fiber amplifier.
The output power of the pulse plateau is tuned between
1 and 2.3 W. MI is seeded by the beating with a small
cw signal emitted by a wavelength-tunable source with a
power �30 dB less than the power of the square pulses.
The square pump pulses are launched in a 2-km-long stan-
dard telecommunication fiber together with the seed signal.
We first studied MI dynamics through the simultaneous
measurements of the optical spectra at half the fiber length
(1 km) and at the fiber output (2 km). The spectra at 1 km
are obtained by means of a 1:99 fiber coupler.

Before presenting our experimental results, it is conve-
nient to briefly recall the theory of MI in the NLS Eq. (1).
Considering in Eq. (1) an initially perturbed cw of the
form E�t, z� � �

p
P0 1 a�t, z�� exp�igP0z� with jaj2 ø

P0 and linearizing with respect to a, one gets the following
dispersion relation k � 61�2jb2jV

p
2V2 2 sgn�b2�V2

c ,
where k and V, respectively, are the gain and frequency of
MI, as defined by a�t, z� ~ exp�kz� cos�Vt�. This expres-
sion shows that MI occurs only in the anomalous dispersion
regime (b2 , 0) and that the MI gain exhibits a finite spec-
tral bandwidth bounded by Vc �

p
4gP0�jb2j and with

a maximum of k � gP0 located in Vopt � Vc�
p

2. In
our experiment, besides the power P0 (i.e., the power of
the square pulses plateau) we control the MI frequency V

thanks to the seed signal, V being merely the frequency de-
tuning of the seed signal with respect to the square pump
pulses. In practice, the MI spectral gain profile is directly
observed on the optical spectrum analyzer thanks to the
amplification of amplifier noise. This allowed us to eas-
ily tune the frequency V at the optimum MI gain fre-
quency V � Vopt for any value of the input power P0.
The peak power of the square pulses was varied between
1 and 2.3 W. The corresponding range of optimal detun-
ing frequencies Vopt is 340–520 GHz (0.44–0.66 nm in
wavelength).

The spectra at 1 and 2 km were recorded under these
conditions for several values of input power P0. Fig-
ures 3(a) and 3(b) show the measured spectra at 1 and
2 km for P0 � 2.2 W. The spectrum exhibits intense side-
bands at 1 km and weak sidebands at 2 km, which con-
stitutes a strong indication of the reversibility of the MI
process. The graph of Fig. 3(c) shows the evolution of the
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FIG. 3. Square-pulse spectra in linear scale measured at
(a) 1 km and (b) 2 km. (c) Relative power of the first sideband
P1�P0 versus P0 at 1 km (dots) and 2 km (crosses). (d) Ex-
perimental (crosses) and calculated (solid line) relative sideband
and pump powers versus P0 at 2 km.

relative power of the first sideband P1�P0 as a function of
the pump power P0 at 1 and 2 km. We see that the rela-
tive sideband power at 2 km initially grows with P0 to
reach a maximum in P0 � 1.5 W and then goes down to a
minimum located in P0 � 2.2 W before increasing again.
When the sideband power reaches its maximum at 2 km
it becomes measurable (i.e., distinguishable from noise)
at 1 km. Subsequently, an increase in sideband power
is observed at 1 km while it decreases at 2 km, which
clearly demonstrates the reversibility of the MI process.
In Fig. 3(d) we show together the evolution of the relative
powers of the cw component Pcw�P0 and of the first side-
band P1�P0 at 2 km vs P0. At P0 � 1.55 W, the maxi-
mum of sideband power corresponds to a minimum of cw
component power. In solid line, we also show the theo-
retical curve obtained by numerical simulation of the NLS
equation. An excellent agreement between experiment and
theory is verified, but it should be noticed that, in order to
obtain this agreement, we had to include in our simula-
tion the loss introduced by the 1:99 coupler at 1 km. Al-
though its coupling ratio is rather weak, this coupler has
a non-negligible insertion loss (�5%) that affects signifi-
cantly the MI process. This explains why, contrary to what
is predicted with the lossless NLS Eq. (1), the minimum of
sideband power at 2 km does not coincide with its maxi-
mum at 1 km in Fig. 3(c).

In order to provide a more complete and accurate
analysis of the dynamical features of MI in optical fibers,
let us now introduce the following change of variables:
z � gP0z, t � �gP0�jb2j�1�2t, and A � E��gP0�1�2

that transform the NLS Eq. (1) into its canonical form
Az � i�2 Att 1 ijAj2A. The evolution in z can then be
studied at a fixed value of z by simply varying the input
power P0 and we can thus suppress the 1:99 coupler to
record the spectra at 2 km without the detrimental effect
of insertion loss. With z � 2 km, the input power range
033902-3
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FIG. 4. Recorded MI spectrum evolution. (a) Log scale;
(b) linear scale.

1–2.3 W corresponds to a variation of z from 2.77 to
6.10, which allows us, as we shall see, to perform a
comfortable and detailed study of FPU recurrence.

The experimental results are shown in Fig. 4 that
presents the MI spectrum evolution under the form of
a density plot in logarithmic power scale and a surface
plot in linear power scale [exact scaled units are used on
the two other axes, z � gP0z, v � �gP0�jb2j�21�2V].
We observe that the energy, initially mainly confined in
the pump wave (v � 0), is progressively transferred to
the sidebands and their higher harmonics, which leads
to a strong pump depletion of approximately 70%, as
predicted theoretically [4]. Up to eight detectable modes
are involved in this energy exchange process. After a
certain propagation distance (z � 4.1) the energy transfer
is reversed and all the power flows back from the sideband
modes to the pump wave. This reciprocal energy exchange
process between the pump and a significant number of
sideband modes is nothing but the spectral signature of
the FPU recurrence phenomenon [1]. The remarkable
feature of Fig. 4(a) is that it shows that the power transfer
between the sideband modes is perfectly synchronous
despite the relatively large number of modes involved.
As stated in the theoretical work of Ref. [10], it is this
033902-4
synchronism that allows for a (nearly) return to the initial
condition.

In summary, through the study of the propagation of
square laser pulses in optical fibers, we have provided the
first experimental demonstration of the FPU recurrence
phenomenon in modulationally unstable optical waves.
Our experiment also constitutes the second demonstration
of FPU recurrence in a system ruled by the NLS equation
that constitutes a model of fundamental importance in
physics. From a practical point of view, our demonstration
reveals the validity of the NLS equation for the description
of the long-term complex nonlinear behaviors of light
waves in silica optical fibers, an issue that is still often the
subject of debates. In this sense, the remarkable result of
our study is to show that FPU recurrence occurs because
the underlying synchronous and reciprocal energy transfer
between a significant number of spectral modes is not
impaired by perturbations such as linear attenuation and
Raman scattering. Our study reveals that the silica optical
fiber constitutes an ideal test bed for the experimental
investigation of the NLS equation dynamics that are
relevant to a large variety of physical systems of both
fundamental and applied interests.
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