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Number of Fermion Generations Derived from Anomaly Cancellation
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We prove that global anomaly cancellation requires more than one generation of quarks and leptons,
provided that the standard model fields propagate in two universal extra dimensions. Furthermore, if the
fermions of different generations have the same gauge charges and chiralities, then global anomaly cancel-

lation implies that there must be three generations.
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The existence of three generations of quarks and lep-
tons is a major source of bafflement for particle physics.
By contrast, the particle content within a generation is
constrained by the mathematical structure of the standard
model. Local anomaly cancellation substantially reduces
the arbitrariness in choosing the SU(3)¢c X SUQR)y X
U(1)y charges of the fermions [1]. For example, the exis-
tence of the observed quarks requires the leptons to cancel
the SUQ2)w X U(1)y triangle anomalies. Furthermore,
the SU(2)w-doublet lepton cancels the global anomaly [2]
of the SU(2)y-doublet quark within each generation.

In this Letter, we show that the number of generations
may also be determined by the anomaly cancellation condi-
tions. In order for this to happen, we are led to consider the
existence of extra spatial dimensions accessible to all the
standard model particles. If the number & of these “univer-
sal” extra dimensions is odd, then there are no local gauge
anomalies in the (4 + §)-dimensional theory. [For odd
0, the higher-dimensional analog of the three-dimensional
Redlich anomaly [3] could spoil gauge invariance of the
quantum effective action. However, the anomalous varia-
tion of the action can be canceled by a Chern-Simons term
(see [4] for a discussion of the 6 = 1 case).] Therefore,
additional anomaly cancellation conditions that may re-
strict the number of generations could arise only for even
0. The natural choice is then 6 = 2. Current experimental
data impose a rather loose upper bound R = (0.5 TeV) ™!
on the size of two universal extra dimensions [5].

The Lorentz group in six dimensions has spinorial
representations of definite chirality with four components.
A representation of the 8 X 8 anticommuting gamma
matrices, ['* with a« = 0,...,5, is given in Ref. [6]. The
I'; matrix, analog to the ys matrix in four dimensions,
has eigenvalues *1 corresponding to the six-dimensional
fermion chiralities. A six-dimensional chiral fermion,
upon compactification on a smooth manifold (without
magnetic fluxes [7]) to four dimensions, gives rise to
vectorlike fermions. A four-dimensional theory with
chiral fermions can be obtained by compactifying the two
extra dimensions on an orbifold, for example, the T%/2,
orbifold constructed in Ref. [5]. This orbifold gives rise
to a chiral four-dimensional theory by projecting out half
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of the components of the six-dimensional Weyl fermions,
while the gauge group in four dimensions is the same as
in six dimensions —the standard model gauge group.

We assume that the six-dimensional theory is chiral and
free of irreducible local as well as global gauge anomalies.
Furthermore, the reducible anomalies are canceled by the
Green-Schwarz mechanism [8], which is a generic feature
of six-dimensional theories [9]. Our main results refer to
the nonsupersymmetric standard model in six dimensions,
but we also discuss supersymmetry towards the end, where
we point out that it is hard to cancel the anomalies in
this case.

We emphasize that we consider the six-dimensional
theory and the orbifold construction in an effective low-
energy field theory framework. It would be very interesting
to find an explicit string theory realization of this non-
supersymmetric field theory. In this context, we note the
assumption that there are no “twisted sector” chiral four-
dimensional fermions localized at the fixed points and
charged under the gauge group. These commonly arise in
heterotic orbifolds [10], but not in open-string orbifolds
[11]; this suggests that the place to look for string real-
ization might be a type-I construction, or, perhaps even
a more exotic construction involving little string theory.
However, this lies beyond the scope of this note—all we
aim here is to provide a consistent low-energy framework.

To this end, consider a generation of six-dimensional
fermions, Q,U,D,L,FE, whose zero modes form a
generation of four-dimensional quarks, Q© = (u,d);,
UO = up, DO = dp, and leptons, £ O = (e,v,),
F O = eg. The four-dimensional anomalies cancel auto-
matically within a generation, and from a four-dimensional
point of view this is sufficient for consistency. In what
follows, we will assume that the four-dimensional theory
is obtained as a deformation of a consistent (i.e., anomaly
free) six-dimensional theory. We will show that the six-
dimensional anomalies do not cancel so easily, and not
only restrict the six-dimensional chiralities within a
generation but also impose a constraint on the number of
generations.

The local gauge anomaly in six dimensions is given by a
square one-loop diagram (for a self-contained introduction

© 2001 The American Physical Society 031801-1



VOLUME 87, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JuLy 2001

to anomalies in six dimensions, see [12]). Consider first
the anomalies of the unbroken SU(3)c X U(1)p part of
the gauge group. A necessary condition for the consis-
tency of the six-dimensional theory is the cancellation of
the irreducible gauge anomalies (i.e., which cannot be can-
celed by the Green-Schwarz mechanism [8] or its gen-
eralization [9] with multiple antisymmetric tensors), re-
quired for allowing the massless gluon and photon. The
U(1)o[SU3)c P gauge anomaly is the only irreducible one
(the quartic anomaly is factorizable for SU(3) and SU(2),
and irreducible for SU(n) with n = 4), and imposing its
cancellation within a generation we find that Q should
have opposite chirality compared with ‘U and D.

The six-dimensional gravitational and mixed gauge-
gravitational anomalies must also cancel to allow a mass-
less graviton. The cancellation within one generation of
the six-dimensional U(1)p-gravitational anomaly implies
that £ and  also have opposite chirality. The pure gravi-
tational anomaly cancels only if the number of fermions
with + and — chiralities is the same (in six dimensions, a
self-dual antisymmetric tensor has gravitational anomaly
equal to that of 28 Weyl fermions; hence, it cannot be
used to cancel the gravitational anomaly of £ and F). As
a result, there must exist an additional fermion, N, with
the same chirality as £. The unprojected zero mode of
N may be identified with a right-handed neutrino. The
above arguments yield four possible chirality assignments
of the fermions:

Q.. U- D, L Ei, N+, (1)
Q..U D, L, E ,N_, ()

and the ones obtained by interchanging + and —. With
these assignments, the reducible anomalies involving
U(l)p and SU(3)¢ also vanish, because the fermion
representations are vectorlike under these groups.

The SUQ2)w X U(1)y six-dimensional anomalies do
not cancel with the standard model field content, but this
may not be troublesome because the electroweak symme-
try is broken. In other words, one could speculate that the
SUQ2)w X U(1)y anomalies from the underlying higher-
dimensional theory would be responsible for part (or even
all) of the W and Z masses. Nevertheless, embedding
the six-dimensional theory in a consistent high-energy
theory that includes quantum gravity most likely re-
quires the SU(2)y X U(1)y anomalies to be canceled
within that underlying theory. This can be achieved
through the Green-Schwarz mechanism: the [SU(2)y 1%,
[UM)y T, [SUQwPISUB)cP, [SUG)cP[U)yF, and
[SUQ2)w*[U(1)y]* anomalies are canceled by two anti-
symmetric tensor fields with appropriate Green-Schwarz
couplings. [The cubic anomaly for SU(2) is identically
zero, while the irreducible [SU(3)¢]*U(1)y anomaly van-
ishes within each generation.] We note that the presence
of reducible anomalies is rather generic in six-dimensional
chiral theories that embed the standard model; hence,
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antisymmetric tensors are a likely ingredient of any
realistic six-dimensional model. (Some components of the
antisymmetric tensors survive the orbifold projection and
have axionlike couplings in the four-dimensional theory.
They may acquire masses after the compactification, e.g.,
from terms localized at the orbifold fixed points, or they
could provide a solution to the strong CP problem.)

The main point we make here is that there is an
additional constraint. In six dimensions there are global
gauge anomalies, analogous to the four-dimensional
Witten anomaly [2]. They occur only for SU(3) [13], as
well as SU(2) and G, gauge theories [14]; see also [15].
Global anomalies are due to the change of sign of the
Weyl fermion determinant under gauge transformations
that are topologically disconnected from the identity; in
six dimensions these arise whenever the gauge group G
has nontrivial 76(G) (the homotopy group of maps of
the six-sphere onto the gauge group). The mathematical
consistency of the theory requires these to cancel. Since
the six-dimensional SU(3)¢ fermion representations are
vectorlike, the SU(3)¢ global anomaly is canceled within
each generation. On the other hand, the SU(2)y global
anomaly cancellation condition [15] requires

N24y) — N(2_-) = O0mod6, 3)

where N(2+) is the number of doublets of chirality =.
Since N(Q) =3 and N(L) =1, the SUQR)y global
anomaly does not cancel within one generation for any
chirality assignment. We are led then to consider the case
of n, generations with identical chirality assignments.
The assignments obtained above, (1) and (2), give

ny, = 0mod3. @)

This is a remarkable result. It is a compelling theoreti-
cal explanation for the existence of three generations. Al-
though anomaly cancellation in six dimensions allows the
number of generations to be a multiple of three, the only
reasonable prediction is ng = 3: a world with n, = 0
would be rather dull, while n, = 6 would imply that the
gauge couplings blow up very fast above the compactifi-
cation scale.

For n, = 3, the effective six-dimensional theory is per-
turbative and well defined for a range of energies above
1/R. The Kaluza-Klein modes of the standard model
in 6 = 2 universal extra dimensions contribute at each
mass level with 2 X (81/10,11/6,—2) to the one-loop
coefficients of the B functions for the U(1)y, SUQ)w,
and SU(3)c gauge couplings. It follows that the six-
dimensional standard model gauge interactions become
nonperturbative at a scale ~5/R [5]. The heavy states
of string theory may become relevant at that scale if the
other four extra dimensions have a large volume [16].
Alternatively, it is conceivable that the six-dimensional
SU@3)c X SUR)w X U(l)y gauge couplings approach a
strongly interacting fixed point in the ultraviolet [17], so
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that the scale of quantum gravity need not be lowered much
below the Planck scale by large extra dimensions.

There is also some experimental evidence in favor of our
n, = 3 prediction: the existence of a fourth generation of
chiral fermions is ruled out at the 97% confidence level
(assuming no other physics beyond the standard model)
by the electroweak precision measurements at LEP, SLD,
and Tevatron [18]. Moreover, the number of light neutrinos
that couple to the Z was measured at LEP to be very close
to three. However, loopholes in these experimental con-
straints are not hard to imagine. For instance, the isospin-
violating effects due to the Kaluza-Klein modes of the top
quark give a positive T parameter [5], which in turn may
allow a large mass splitting within the SU(2)y-doublet
fermions of a fourth generation. In this case, a chiral fourth
generation would render an acceptable fit to the electro-
weak data. Likewise, the constraint on the number of
SU(2)w-charged neutrinos does not apply when they are
heavier than half the Z mass. Hence, the determination of
ny from anomaly cancellation can be viewed as a predic-
tion that will be tested in future experiments.

The anomaly cancellation conditions do not restrict the
number of vectorlike generations. Even if these exist, there
is a simple reason why they have not been seen yet: their
masses are gauge invariant and are likely to be of the or-
der of the fundamental (string) scale, My > 1/R. How-
ever, it is also possible to have a vectorlike six-dimensional
generation and four-dimensional chirality introduced by
the orbifold compactification such that the zero modes
of the six-dimensional fermions form two chiral genera-
tions. Other ways of canceling the anomalies can also be
found when the chirality assignments differ between gen-
erations. An example is two generations where one has
chirality assignments given by Eq. (1), while the other’s
chirality is similar to that in Eq. (2). Depending on the
four-dimensional chirality (L or R) assigned to the zero
modes by the orbifold, there are two cases (up to the over-
all interchanges + < — or L < R):

Q1)1 (UL)R, (DD)g, (L)1 (DR, (N Dk s

&)
(Q%)r, (U2) L, (D2)1, (L)r: (E2)1, (N2,
(Q)1, (UL)R, (DD, (L)1 (E DR, (N Dk s ©
(@31, (U2)r, (D2)r, (L)1, (E2)r, ( N2k,
where the upper index labels the generation. Case (5)

gives rise only to vectorlike quarks and leptons in the ef-
fective four-dimensional theory. In case (6), however, the
zero modes form two identical generations of chiral fer-
mions. Thus, a more precise formulation of our result is
that six-dimensional anomaly cancellation requires the ex-
istence of more than one fermion generation, and in the
case of identical generations (i.e., same charges and chi-
ralities, and also same properties under the orbifold trans-
formation) their number has to be a multiple of three.
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The results obtained thus far apply only to nonsuper-
symmetric theories. In the case of minimal supersym-
metry in six dimensions, the anomalies are significantly
more restrictive [9]. This is because (1,0) supersymme-
try requires all matter fermions to have the same chirality,
opposite to that of the gauginos and gravitino. Cancel-
ing the anomalies by the Green-Schwarz mechanism se-
verely constrains the matter content. Thus, for an SU(3)
gauge theory with hypermultiplets only in the 3 and 3 rep-
resentations, the cancellation of local and global anoma-
lies combined requires that the number of hypermultiplets
be 0, 6, 12, or 18; for SU(2) only 4, 10, or 16 doublets
are allowed. [The upper limit holds in the theory without
gravity. Using the antisymmetric tensor from the gravi-
ton supermultiplet to cancel the anomaly relaxes the upper
limit and allows for a larger number of hypermultiplets,
with the same periodicity, e.g., 24, 30, etc., for SU(3).]
Since the number of fermions in the fundamental repre-
sentation is 4n, and 4n, + 2, for SU(3)¢ and SUQ2)w,
respectively, this rules out the six-dimensional (1,0) su-
persymmetric “standard model” with any n,. Therefore,
the supersymmetric models, often considered in the litera-
ture [19], with quarks and leptons in the bulk of two extra
dimensions are anomalous. One could try the n, = 3 case
with two additional SU(2)y -doublet hypermultiplets. This
theory, however, suffers an irreducible U(1)y[SU3)c P
anomaly. This and the U(1)y-gravitational anomaly can
be canceled simultaneously only if hypermultiplets with
exotic U(1)y X SU(3)¢ charges are added to the theory,
which is a significant departure from the standard model.
The higher supersymmetries in six dimensions (which re-
duce to N = 4 supersymmetry in four dimensions) do not
allow (at least for now) a prediction regarding the number
of generations: the (1, 1) supersymmetric theory is vector-
like, while the chiral (2,0) theory remains rather mysteri-
ous. Hence, the compelling explanation for the existence
of three fermion generations suggests that supersymmetry
is broken at the string scale (or at least above the com-
pactification scales of additional, smaller universal extra
dimensions).

Another issue is whether the number of generations
could be determined based on global anomaly cancellation
conditions when the number of extra dimensions is larger.
From the point of view of string theory only the cases 6 =
2,4,6 are interesting. Given that the SU(3)¢ representa-
tions are vectorlike within a generation, only SU(2)w could
have a global anomaly. The relevant homotopy groups
are wg[SUQ2)] = Z, for 6§ = 4, and 19[SUQR)] = Zi5
for & = 6 (see Ref. [20]). The generalization to 2 = § =
12 of the global anomaly cancellation condition given in
Eq. (3) is

cs[N(2+) — N(2-)] = Omodns, (N

where cs is an integer, and n; is the number of homotopy
group elements (ns = 12,2,15 for 6§ = 2,4,6.) Given
that N(2+) — N(2-) is even within each generation, there
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is no constraint on n, when 6 = 4, while the global anom-
aly poses a severe restriction on n, when 6 = 6. Only the
case 6 = 2 is both predictive and viable, as a consequence
of the fact that the homotopy group 7[SU(2)] = Zi, is
large and has an even number of elements.

An important point we should stress is that the global
anomaly cancellation condition we have found applies also
if the six-dimensional gauge group is larger, for example,
if SU(3)c X SUR)w X U(1)y is embedded in a gauge
group broken by the compactification. In such a scenario
the global anomaly of SU(2)y should appear as a local
anomaly.

The arguments we have given apply for any size R
of the two extra dimensions as long as there is a range
of scales where an effective six-dimensional field theory is
valid. However, the usual hierarchy problem suggests that
the compactification scale should be close to the electro-
weak scale. One may view the derivation of the num-
ber of fermion generations based on anomaly cancellation
conditions as evidence for the existence of two universal
extra dimensions. Independent support for this conclu-
sion is given by the successful breaking of the electroweak
symmetry [6] by a composite Higgs field that arises due
to standard model gauge dynamics in two universal extra
dimensions.

In summary, we have shown that global anomaly can-
cellation for the standard model in two universal extra
dimensions implies that there must be more than one gen-
eration of quarks and leptons, and, if these generations are
identical from the point of view of the fermion charges,
six-dimensional chiralities, and transformation properties
under the orbifold projection, then their number should be
three.
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