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The ground state and its structure for a rotating, harmonically trapped N-boson system with a weak re-
pulsive contact interaction are studied as the angular momentum L increases up to 3N . We show that the
ground state is generally a fragmented condensate due to angular momentum conservation. In response
to an (arbitrarily weak) asymmetric perturbation of the trap, however, the fragmented ground state can
be transformed into a single condensate state. We manifest this intrinsic instability by calculating the
conditional probability distributions, which show patterns analogous to the boson density distributions
predicted by mean-field theory.
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Following the experimental realization of a dilute atomic
Bose-Einstein condensate (BEC), the formation and prop-
erties of vortices in an atomic BEC have caused consid-
erable interest both experimentally [1] and theoretically
[2–9] in the past few years. Although the recent demon-
strations of vortex states by several different groups are
in the Thomas-Fermi limit of strong interatomic inter-
action, a great deal of attention has also been attached
to the nonvanishing angular momentum (AM) states of
weakly interacting N -boson systems in harmonic traps. In
Ref. [3], Wilkin et al. considered the case of an attrac-
tive interaction and showed that the ground state is uncon-
densed and is an example of the fragmented condensate
discussed by Nozières and Saint James [10]. Mottelson
[4], Bertsch, and Papenbrock [5] considered the lowest en-
ergy quantum states of a repulsively interacting Bose gas
when L < N . Wilkin et al. have employed a composite
boson/fermion picture to describe configurations beyond
the one-vortex state [6]. A more tractable mean-field cal-
culation performed by Butts and Rokhsar revealed a suc-
cession of transitions between stable vortex patterns of
differing symmetries in the high AM regime [7]. The
connection between the mean-field theory (MFT) and ex-
act diagonalization scheme has been studied by Jackson
et al. for a special case of L � 2N [8]. Finally, some
analytical results have also been reported for the lowest
energy states [9].

In this Letter, we address the question of whether the
ground state of a weakly interacting N-boson system with
a given AM is what one would normally expect, i.e., a
state with a single coherent Bose condensate, in which a
mean-field approximation is valid. We propose that this is
not the case and the ground state is generally a fragmented
condensate in the presence of the weakly repulsive inter-
atomic interaction except L�N � 0 or 1 in the thermody-
namic limit. By evaluating the macroscopic eigenvalues of
the single-particle (SP) density matrix, we determine the
0031-9007�01�87(3)�030404(4)$15.00
degree of condensation. The origin of fragmentation turns
out to be a requirement of the conservation of AM. As
a result, by turning on an (arbitrarily weak) asymmetric
perturbation of the trap, the fragmented ground state can
be easily deformed to a single condensate state [11]. This
intrinsic instability can be manifested by the conditional
probability distributions (CPDs) calculated for the ground
state, which show patterns analogous to boson density dis-
tributions predicted by MFT. Note that the weakly inter-
acting N-boson system considered here is quite similar to
the spin-1 Bose gas studied by Ho and Yip [12], in which
the fragmentation originates from the spin conservation.

We start from the model Hamiltonian describing N
bosons in a two-dimensional harmonic trap interacting via
a weak contact interaction. The SP spectrum is usually
expressed in terms of the AM quantum number m and
the radial quantum number nr , by Enr ,m � �2nr 1 jmj 1

1�h̄v. In the ground state of the system, all the bosons are
in states with nr � 0, and with m being zero or having
the same sign as the total AM. In the second quantized
form, the Hamiltonian reads

H � H0 1 V ,

H0 � h̄v
X

j

� j 1 1�â1
j âj ,

V �
1
2

g
X

i,j,k,l

Vijklâ
1
i â1

j âkâl ,

(1)

where H0 is the SP oscillator Hamiltonian and V is the
two-body interaction between bosons. In the perturbative
regime of weak interactions, Ng ø h̄v. The operator
âj and â1

j annihilate and create one boson in the SP
oscillator state j j� with energy � j 1 1�h̄v and AM jh̄,
respectively, and obey the bosonic commutation rules.
The contact interaction elements are given by Vijkl �
di1j,k1l22�i1j��i 1 j�!��i! j! k! l!�1�2 [9], and most of
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them are actually vanishing. For a given total AM L
and number of bosons N , we consider the Fock space
spanned by states ja� � jn0, n1, . . . , nk� with

P
j nj � N

and
P

j jnj � L. Here, nj denotes the occupation of the
jth SP oscillator state j j�. There is a huge degeneracy
corresponding to many different ways of distributing L
quanta of AM among N atoms. Here, we restrict ourselves
in a truncated Fock space of 0 < j < jmax � 6 [8,13].
To obtain the energy spectra and the corresponding eigen-
states, we set up the matrix elements in the Fock space
basis, and subsequently diagonalize the matrix by using
the Davidson algorithm [14].

A fragmented ground state.— First, consider the SP den-
sity matrix in the form of

r�r, r0� �
X

ij

c�
i �r�rijcj�r0� , (2)

with cm�r� � �r jm�. In Ref. [15], Yang showed that the
appearance of condensation is associated with the single
macroscopic eigenvalue (i.e., of order N) of the density
matrix r�r, r0� with the “condensate wave function” be-
ing the associated eigenvector, while the case of more than
one macroscopic eigenvalue has been referred to as a “frag-
mented” condensate [10]. The most important difference
between the single and fragmented condensate is the lack
of phase coherence of the latter. To find the eigenvalues of
the SP density matrix, we write [15]

rij � Spâirâ1
j , (3)

where the trace runs over all the N 2 1 boson states, and
the density matrix r � jCGS� �CGSj. It is readily seen that
the eigenvalues are nothing but the occupation numbers
of the SP oscillator state due to the conservation of the total
AM, namely, rij � dijnj . It is difficult to give an explicit
expression for the occupation numbers nj . In the case of
L � N , Wilkin et al. find that, in the limit of N ! `, to
the order O�1�N � [3],

n0 � 1, n1 � N 2 2, and n2 � 1 . (4)

They therefore conclude that the N -boson system is fully
condensed into the one-vortex state in the thermodynamic
limit. More detailed information can be obtained from the
exact diagonalization calculations [5]. In Fig. 1, we show
the L dependence of the occupation numbers nj and their
fluctuations Dnj � ��n̂2

j � 2 �n̂j�2�1�2 for j � 0, 1, 2, 3, 4
for a system of N � 40 bosons. When L < N , the oc-
cupation numbers evolve rather smoothly as the AM in-
creases [5], while, for L . N , there are many kinks in the
curves, reflecting the complexity of the ground states. The
most prominent feature in the figure is that for a high AM
there are generally at least two significant occupation num-
bers. For instance, at L � 70, the system has two large
occupation numbers: nj � 9 and 23 for j � 0 and 2, re-
spectively. Evidently the case gives a fragmented conden-
sate. Although the present calculation is performed in the
case of N � 40, the conclusion that a fragmented conden-
sate ground state exists universally applies to the trapped,
030404-2
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FIG. 1. Values of nj (solid squares) and Dnj (open circles) of
five lowest SP oscillator states as a function of L for a system
of N � 40 bosons with jmax � 6. The cases of j � 5 and 6
are not shown due to their low occupancy.

weakly interacting and rotating N-boson systems with an
arbitrary N including the thermodynamic limit N ! ` [7].

To examine the validity of the above statement, we in-
vestigate the N dependence of the number of significantly
occupied SP states by computing the inverse participation
ratio [5,16]:

IC �
X

j

�nj�N�2. (5)

The IC is the first nontrivial moment of the distribution of
occupation numbers among the different SP states (note
that

P
j nj�N � 1 by normalization). Its inverse 1�IC

qualitatively measures the number of significantly occu-
pied SP states. Figure 2 shows a plot of 1�IC as a function
of AM L for a system of N � 30, 40, 50, and 60 bosons.
It is easy to see that in the regime of L�N , 1.6 the value
of 1�IC varies smoothly as L�N increases and shows little
dependence on N . In particular, the variation of the peak
height at L�N � 1.6 is less than 3% as N increases from
30 to 60 (not shown in the figure). For L�N . 1.6, some
irregular small oscillations appear in the curves. However,
the overall profile of 1�IC is still nearly independent of N .
These small oscillations are purely due to the finite N ef-
fect [17] and decay gradually with increasing N . One may
expect them to vanish in the limit of N ! `. Therefore,
we conclude that 1�IC can be further used to qualitatively
measure the number of macroscopically occupied SP states
in the thermodynamic limit, or, in other words, to deter-
mine whether the ground state is fragmented or not.

As shown in Fig. 2, there are two global minima ��1�
at L�N � 0 and L�N � 1, which can be well interpreted
as a signature of single condensates. For other values of
L�N (especially in the high AM), however, 1�IC is gen-
erally larger than 2. This clearly indicates the fragmented
030404-2
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FIG. 2. 1�IC versus L�N for a system of N � 30, 40, 50, and
60 bosons. Small oscillations at L�N . 1.6 are caused by the
finite N effect. The overall profile of 1�IC is nearly independent
of N , thus 1�IC can be used to qualitatively measure the number
of macroscopic occupation numbers in the limit of N ! `.

nature of the corresponding ground states. Another no-
table feature in Fig. 2 is that the overall profile of 1�IC

exhibits a valley around L�N � 1.0, 1.8, and 2.4. This is
consistent with the broad peaks of nj at L � 40, 70, and
90 for j � 1, 2, and 3, respectively, as shown in Fig. 1.
The number fluctuations Dnj are in the order of O�n1�2

j �
for these peaks, exhibiting a local characteristic of a single
coherent condensate.

The intrinsic spontaneous symmetry breaking of a frag-
mented state.—Let us now consider the stability of such
a fragmented ground state. In Refs. [11,12], the authors
argued that the fragmented state is inherently unstable to
the formation of a single condensate of a well-defined
phase. The essential idea is that even a weak perturba-
tion that breaks the conservation laws will rapidly generate
phase coherence, modifying the density matrix determinis-
tically to give a unique macroscopically occupied SP state.
To support this point, we first show that the fragmented
state and its corresponding single condensate state have
the same energies in the limit of N ! `, up to the order
of O�gN �. A similar conclusion has been reported by Jack-
son et al. for the special case of L � 2N [8]. In Fig. 3, the
interaction energy Vint in units of gN2 is plotted as a func-
tion of L�N for a system of N � 20, 40, and 60 bosons.
As N increases, Vint becomes closer in value to that of a
single condensate V

mf
int , as predicted by the MFT [7]. The

inset shows the energy difference DVint � V
mf
int 2 Vint in

units of gN . It is readily seen that all the DVint with dif-
ferent N are approximately located on a universal curve.
This strongly suggests that DVint can be described by an
approximate form:

DVint � agN ø h̄v , (6)

where in the thermodynamic limit the factor a � 1 de-
pends on L�N only and the inequality comes from our
assumption of weak interaction. As a result, even a per-
030404-3
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FIG. 3. Vint in units of gN2 as a function of L�N for a system
of N � 20 (solid triangles), 40 (open circles), and 60 (solid
squares) bosons. For comparison, the Vint predicted by MFT is
also depicted by the thick solid line. The inset shows the energy
difference DVint � V

mf
int 2 Vint in units of gN . Note that all the

DVint with different N are approximately located on a universal
curve.

turbation of order O�1�N� can be enough to drive the
fragmented state into a single condensate state. This fact
clearly indicates that the fragmented state will sponta-
neously break whatever the fragmentation was permitted
by cylindrical symmetry in the first place.

This result can be understood in another way by con-
sidering the CPDs [18] that give the density correlation
among bosons. We define the CPD for finding one boson
at r given another at v0 as

P �r j v0� �
�CGSj

P
ifij d�r 2 ri�d�v0 2 rj� jCGS�

�N 2 1� �CGSj
P

j d�v0 2 rj� jCGS�
.

(7)

Unlike the usual density distribution that is cylindri-
cally symmetric under rotational invariant confinement,
the CPD is asymmetric and reflects an intrinsic density
distribution [19].

What will an inherently unstable fragmented state evolve
into if a weak perturbation is switched on? One may ex-
pect that the system will rapidly change into a state having
the same intrinsic density distribution as the fragmented
state, and simultaneously generate phase coherence [12].
In view of this, the CPD gives the tendency of a system’s
evolution and can be regarded as a measurement of the
possible spontaneous symmetry breaking.

In Fig. 4, we show the L dependence of the CPDs for
a system of N � 40 bosons. As expected, we observe
the successive vortexlike patterns of differing symmetries,
which are in good qualitative agreement with the mean-
field calculations [7]. Both of them show a gradual transi-
tion for the formation of one- (Fig. 4a) and two-vortexlike
(Fig. 4b) states in contrast to the rapid appearance of the
three-vortexlike state (Fig. 4c) [7]. As mentioned above,
030404-3



VOLUME 87, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 16 JULY 2001
FIG. 4. Selected CPDs for a system of N � 40 bosons.
(a), (b), (c), and (d) correspond to the emergence of vortexlike
patterns with p-fold symmetry (p � 1, 2, 3, 4). In each panel,
L increases in steps of one unit, and the starting value of L in
(a), (b), (c), and (d) is 33, 62, 79, and 108, respectively. The
values of x and y in each subplot range from 23.0 to 13.0.
The given point v0 is �0, 1.0�. For large N , the CPD is nearly
independent of v0.

we identify this similarity as a signal of spontaneous sym-
metry breaking of fragmented states.

On the other hand, one should not confuse CPDs with
the “true” vortex patterns predicted by the MFT [7]. The
latter has phase coherence, which is not just well defined in
CPDs. Besides this, they have a different physical mecha-
nism for the vortex emergence with the increasing L. For
example, our results seem to show that the one and two
vortex are produced at the center of the cloud of conden-
sate, in apparent contradiction to the prediction of the MFT
that the vortex enters the cloud from the low-density pe-
riphery. These differences may be resolved through the
Josephson tunneling experiment suggested by Leggett and
Sols [20]. Certainly, more accurate theoretical studies on
the fragmented state are required.

In conclusion, we have studied the ground state of a
weakly interacting N-boson system with a given AM. We
propose that the ground state is generally a fragmented
condensate state, which is rather fragile in response to a
weak asymmetric perturbation. By calculating the corre-
sponding CPDs, we manifest this intrinsic instability. A
comparison with the mean-field results is also given.
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