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Evidence of Nonperturbative Continuum Correlations in Two-Dimensional Exciton Systems
in Semiconductor Microcavities
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In nonlinear semiconductor optics, two-particle scattering is often being modeled successfully within
the second Born approximation (2nd BA) of the Coulomb interaction. It is shown in this paper that, at low
energies, such a perturbative treatment of Coulomb correlations applied to exciton-exciton scattering in
two-dimensional systems fails even qualitatively (unless phenomenological or self-consistent dephasing
processes are included in the theory). We show that the failure of the 2nd BA in two dimensions can
be inferred from a comparison of our theoretical results with reported experiments of four-wave mixing
signals from semiconductor microcavities.
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Linear excitonic absorption effects (see, e.g., [1]) and
optical nonlinearities arising from exciton-exciton interac-
tions in quasi-one-, two-, and three-dimensional semicon-
ductors are well established (see, e.g., [2–4]). While the
dimensionality dependence of linear excitonic effects is
well understood (the simplest example being the increase
of exciton binding energy with decreasing dimensional-
ity), that of nonlinear excitonic effects is in general not
clearly established. In this Letter, we discuss one aspect
of this issue which concerns exciton-exciton scattering at
low kinetic energies. Such scattering processes are com-
monly treated within the second Born approximation (2nd
BA), because this approximation can already account, at
least qualitatively, for all observable signatures of exciton-
exciton scattering in nonlinear optical experiments. More-
over, numerous experiment-theory comparisons (includ-
ing cases involving exciton-free-carrier scatterings) seem
to validate the 2nd BA. Examples include the line shape
of optical gain spectra in semiconductor lasers [5], photo-
luminescence from semiconductor quantum wells [6], and
optical Stark shifts in semiconductor quantum wells [7].

While we do not dispute the validity of the model as-
sumptions underlying those experiment-theory compari-
sons, we will show in the following that the 2nd BA in
two dimensions should be used with caution. In fact, if
the theoretical results are not smoothened by phenomeno-
logical or self-consistently calculated [6] dephasing rates,
the 2nd BA T matrix (or scattering amplitude) govern-
ing low-energy exciton-exciton scattering would diverge in
the limit of zero exciton center-of-mass-motion energies,
while the exact scattering amplitude is known to vanish as
1�ln�energy� in the same limit [8]. These behaviors re-
sult from the dimensionality of the system and hold for any
generic short-ranged potential independent of strength and
other details. In analyzing semiconductor experiments, in-
cluding the ones referenced above, dephasing introduced
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into the theory regularizes these nonanalytic behaviors, but
their presence is still indicated by the large deviation of
the 2nd BA T matrix from the exact one even for only
moderately strong potentials (below, we will show this
in more detail, cf. Fig. 2). Admittedly, since this devia-
tion is quantitative instead of qualitative, its effects may
not be ascertainable in many cases where other theoreti-
cal and/or experimental uncertainties are present. The 2nd
BA theory would then be deemed satisfactory. Given this
situation, one might ask if this theoretical breakdown of
the 2nd BA is relevant at all to the interpretation of nonlin-
ear optics experiments on two-dimensional semiconductor
structures. It is the purpose of this paper (i) to show that
third-order nonlinear experiments are direct probes of the
exciton-exciton zero-momentum off-energy-shell T matrix
and relate this special case to the general results of two-
dimensional scattering theory, and (ii) to show that there
indeed exist experimental data that yield signatures of the
breakdown of the 2nd BA in two-dimensional exciton-
exciton scatterings.

There have been other theoretical assessments of the
limitations of the 2nd BA for carrier-carrier and carrier-
phonon scatterings in semiconductors [9–11]. In particu-
lar, Ref. [11] also pointed out the relation between the
breakdown of the 2nd BA for carrier-carrier scattering and
the system’s dimensionality. To our knowledge, these find-
ings have not been corroborated by experiments.

In principle, the 2nd BA for exciton-exciton scatter-
ing fails in any x �3� measurement configuration on thin
quantum wells. We choose here to demonstrate this fail-
ure within a microscopic theory of frequency-resolved
degenerate four-wave mixing (FWM) because, when the
quantum well is embedded in a microcavity, the FWM
signals are particularly sensitive to higher-order exciton
continuum correlations. We show below that the microcav-
ity FWM data reported in Ref. [12] are indeed sufficiently
© 2001 The American Physical Society 027402-1
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sensitive to yield experimental indications of the failure
of the 2nd BA in two dimensions. Although the two-
dimensional 2nd BA, in principle, also fails in other physi-
cal systems, scattering experiments in two dimensions are
generally more difficult to set up than in the exciton sys-
tem in a quantum well microcavity.

In the following, we review and discuss our theoretical
approach to four-wave mixing in semiconductor quantum
wells in the 3rd-order nonlinear optical regime and its
relationship to the quantum mechanics of two-particle
scattering. Our theoretical approach is based on the
dynamics-controlled truncation (DCT) formalism [13] and
includes a quantitative evaluation for optical excitation
frequencies close to the heavy-hole exciton resonance in
thin quantum wells.
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We start with the x �3�-DCT equations [13] for the inter-
band polarization and the coherent two-electron-two-hole
(biexcitonic) correlation function (see, e.g., [14,15]). Fol-
lowing Ref. [16], we expand the equations in the exciton
eigenfunction basis, taking into account the antisymmetry
of the biexcitonic correlation function in the two-electron
and the two-hole coordinates, and truncate to the 1s sub-
space. We evaluate the theory in the cw (continuous wave)
configuration, with spectrally degenerate pump [Ep�v�]
and probe [Et�v�] light fields. In this case, the 3rd-order
polarization can be written as

P
�3�
6 �v� ��x11�v�Ep6�v�E�

t6�v�
1 x12�v�Ep7�v�E�

t7�v��Ep6�v� , (1)

where 1, 2 denote the circular polarization states, and the
3rd-order susceptibilities are given by
(

x11�v�
x12�v�

)
� 2

C

�h̄v 2 ´��0� 1 ig2�2����h̄v 2 ´��0����2 1 g
2
2 �

(
T11�2v� 1 GPSF�2v�

T12�2v�

)
, (2)
where ´� �q� is the energy of an exciton with center-of-
mass momentum �q, g2 is a phenomenological dephasing
rate for the interband polarization, and C is a real, posi-
tive constant. The phase-space-filling term is GPSF�V� �
2�4p�7� ��h̄V�2� 2 ´��0� 1 ig2�a2

0 (a0 is the 3D exci-
tonic Bohr radius) and T11�V� and T12�V�, as discussed
below, may be identified with the forward scattering am-
plitudes of two excitons with zero relative momentum
and total center-of-mass frame energy h̄V. The �2e, 2h�
Hamiltonian is block diagonal in the basis of total elec-
tron spin [16]. Denoting the T’s in the triplet (singlet)
electron-spin channel by Txx�1��Txx�2�� , we have T11 �
Txx�1�, T12 � �Txx�1� 1 Txx�2���2. In each (electron
spin) channel, Txx is given by the equation
Txx�l��V 1 igb� � W
xx�l��
�0,�0

1
X
�q �q 0

W
xx�l��
�q,�0

��h̄V 2 Hxx�l� 1 igb�21�1 2 lS�21� �q,�q0W
xx�l�
�q0,�0

, (3)
where l � �1, 2� and the two-exciton Hamiltonian
Hxx�l�, in the exciton momentum basis, is

H
xx�l�
�q, �q0 � 2´� �q�d�q �q0 1

X
�k

�1 2 lS�21
�q,�k

W
xx�l�
�k, �q0

. (4)

gb is an effective phenomenological decay rate of the
coherent-biexciton amplitude, and W

xx�l�
�q,�q0 is the Coulomb

matrix element between the initial exciton state with
relative momentum �q0 and the final state �q. Wxx�l� in-
cludes both the direct and electron-exchange interactions,
the latter being the dominant term at low momenta [6]. S is
a matrix of overlap integrals between the nonorthonormal
antisymmetrized two-exciton basis states. Further details
of the two-exciton Hamiltonian can be found in [16–18].

In standard DCT treatments, the first and second terms
on the right-hand side of Eq. (3) come from the Hartree-
Fock and four-particle correlation contributions to the in-
terband polarization, respectively. We would like to point
out, however, that Eq. (3) can also be interpreted as the ex-
pression for the �q � 0 element of the off-energy-shell T
matrix for two particles scattering off each other through
the interaction Wxx�l�, with two caveats: the presence
of the matrix �1 2 lS�21 and the fact that Wxx�l�� �q, �q0�
is not Hermitian. Both complications can be traced to
the nonorthogonality of the antisymmetrized two-exciton
basis functions and the truncation of the expansion to 1s,
or, in other words, the fermionic composite nature of the
exciton. Our numerical studies [19] show that, while omis-
sion of S and the anti-Hermitian part of Wxx�l� may change
the result quantitatively, it does not affect the conclusions
we draw below on the features of Txx and on the compari-
sons with experiments. It is with these qualifications that
we refer to Txx as the exciton-exciton T matrix (or forward
scattering amplitude).

The appearance of the exciton-exciton interaction
W

xx�l�
�q,�q0 in the inverse propagator in Eq. (3) is equivalent

to a nonperturbative, infinite-order dependence of the
T matrix on the interaction Wxx . Thus, calculation of
the T matrix requires knowledge of the true two-exciton
scattering wave functions. Within the second Born
approximation, the interaction term in the two-exciton
Hamiltonian (4) is being neglected, so that, without the
overlap matrix, the T matrix has the simple form

Txx�l��V 1 igb� � W
xx�l��
�0,�0

1
X

�q

jW
xx�l�
�q,�0

j2

h̄V 2 2´� �q� 1 igb
.

(5)

This approximation corresponds to replacing the exact
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FIG. 1. Schematic visualization of the T matrix [Eq. (3)]. The
squiggly lines represent the exciton-exciton interaction Wxx .

two-exciton wave function by a product of two plane
waves. A schematic visualization of the T matrix and
its second Born approximation is given in Fig. 1. One
can see that, provided lim �q!0W

xx�l�
�q,�0

fi 0, the momentum
sum in Eq. (5) develops a logarithmic singularity in its
real part and a discontinuity in its imaginary part at
h̄V 2 2´��0� � 0 in the limit gb & 0.

We have numerically evaluated Txx by discretizing
and diagonalizing Hxx, and constructing the resolvent in
Eq. (3) via eigenfunction expansion [19]. In Fig. 2 we
show, as an example, our calculated exciton-exciton T
matrix for GaAs parameters (electron mass me � 0.067
in units of the electron mass in vacuum, hole mass
mh � 0.1, and background dielectric constant � 13) for
the 11 configuration. For clarity, the decay rate gb ,
which describes deviations from the ideal coherent x �3�

regime, has been chosen to be small, gb � 0.1 meV (in

FIG. 2. Calculated exciton T matrix for GaAs quantum wells
in the �11� polarization configuration for gb � 0.1 meV. A
small gb is used in this figure to highlight the developing diver-
gence at zero energy. ´�0� is the optical exciton frequency.
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high-quality quantum wells at low temperatures 0.1 meV
seems to be a realistic value, cf. [20]). Figure 2 shows
clearly the shortcomings of the second Born approxima-
tion. T12 (not shown) carries a biexciton pole which
modifies the low-energy continuum amplitude, worsening
the errors in the 2nd Born T12.

Microcavity FWM data.—For a quantum well in a mi-
crocavity, schematically shown in Fig. 3, we augment the
above FWM theory with a standard transfer matrix treat-
ment of light propagation through the dielectric layers (see,
e.g., [21]). The quantum well is assumed to be very thin, so
that its transfer matrix reduces to the one given as Eq. (29)
in Ref. [21]. The transfer matrix solutions are done sepa-
rately for the 1st-order and 3rd-order fields, with zero in-
coming fields on one (both) side(s) of the cavity for the
1st (3rd)-order fields. Since, in the experiment, the angle
between pump and probe is very small, all light fields in
the theory are assumed to come in at normal incidence.
The solution of the 1st-order fields at the position of the
quantum well is used as the source of the 3rd-order field
which propagates in the FWM direction (see Fig. 3). The
detectable FWM signal outside the cavity can then be writ-
ten as IFWM

i �v� ~ K�v� jP�3�
i �v�j2 where i � x, y, 1, or

2 denotes the linear and circular polarization states of the
signal, P

�3�
i is evaluated with the appropriate choice of in-

cident light-field polarization components, and K�v� is a
polarization-independent cavity factor that results from the
transfer matrix solution [18]. The frequency dependence
of K�v� is similar to the linear reflectivity of the cavity,
i.e., it exhibits peaks at the spectral positions of the cavity
polariton modes (cf. Fig. 4). We adjust the width of these
modes in order to account for finite pulse duration effects.

In order to address the question of whether a perturba-
tive 2nd Born treatment of exciton-exciton scattering in
two dimensions is justified, we compute the cavity FWM
signal IFWM�v� with material and cavity parameters
corresponding to the experimental situation in Ref. [12].
We do so for both cases: (i) the T matrix evaluated in
the 2nd BA and (ii) the full, nonperturbative solution
for the T matrix. As one can see from Fig. 4, the full
T -matrix solution gives excellent agreement with the
experiment in all four polarization configurations. In
contrast, the 2nd BA yields significant discrepancies,

FIG. 3. Schematic of the microcavity four-wave mixing con-
figuration (DBR � distributed Bragg reflector; SQW � single
quantum well).
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FIG. 4. Frequency-degenerate four-wave mixing signals
from a semiconductor–quantum-well microcavity: calculated
full T matrix solution (solid line), calculated signal in 2nd
Born approximation (dotted line), experimental data taken
from [12] (dashed line). The polarization configurations are
indicated in the order (pump, probe, signal). Also shown is
the linear reflectivity (upper panel: theory, dash-dotted line;
experiment, dashed line). The cavity is tuned to the exciton
resonance at 1.552 eV. In the calculation, the dephasing
rates, g2 � 0.75 meV, gb � 1.5 meV, have been chosen in
accordance with the experimental conditions in [12].

mainly at the upper cavity polariton peak. In this fig-
ure, we have normalized all theoretical data with the
same normalization factor. This normalization factor
was chosen such that the peak height of the T-matrix
calculations at the lower peak in the (x, y, y) configuration
coincides with the experimental peak height. Since the
full T-matrix results agree so well with the experiment,
we could have chosen any other peak to determine this
factor without changing the basic appearance of Fig. 4. In
particular, our conclusion —the 2nd Born approximation
strongly overestimates the strength of the upper cavity-
polariton FWM signal and hence the two-exciton contin-
uum correlations —is independent of the way we choose
the normalization factor. Our classical-light treatment
neglects radiative corrections to the intermediate exciton
states in Eq. (3) which, we believe, are unlikely to affect
our conclusion since they do not change the available
exciton density of states substantially. A more rigorous
examination of this issue is under way. In summary, we
have shown that microcavity FWM signals are sensitive
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probes of the exact nature of exciton-exciton correlations
in quasi-two dimensions. The theory-experiment com-
parison presented above indicates the failure of the 2nd
Born approximation, which we attribute to the fact that
in two dimensions theoretical treatments of low-energy
two-particle scattering have to be nonperturbative.
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