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“Soft” Anharmonic Vortex Glass in Ferromagnetic Superconductors
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Ferromagnetic order in superconductors can induce a spontaneous vortex (SV) state. For external field
H � 0, rotational symmetry guarantees a vanishing tilt modulus of the SV solid, leading to drastically
different behavior than that of a conventional, external-field-induced vortex solid. We show that quenched
disorder and anharmoinc effects lead to elastic moduli that are wave-vector dependent out to arbitrarily
long length scales, and non-Hookean elasticity. The latter implies that for weak external fields H , the
magnetic induction scales universally like B�H� � B�0� 1 cHa , with a � 0.72. For weak disorder, we
predict the SV solid is a topologically ordered glass, in the “columnar elastic glass” universality class.
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Rare-earth borocarbide materials exhibit a rich phase
diagram that includes superconductivity, antiferromag-
netism, ferromagnetism, and spiral magnetic order
[1–3]. In particular, there is now ample experimental
evidence that, at low temperatures, superconductivity and
ferromagnetism competitively coexist in ErNi2B2C com-
pounds. Other possible examples of such ferromagnetic
superconductors (FS) are the recently discovered high
temperature superconductor Sr2YRu12xCuxO6 and the
putative p-wave triplet strontium ruthenate superconduc-
tor, Sr2RuO4, which spontaneously breaks time reversal
symmetry. For sufficiently strong ferromagnetism, such
FS’s have been predicted [3] to exhibit a spontaneous vor-
tex (SV) state driven by the spontaneous magnetization,
rather than by an external magnetic field H. The novel
phenomenology of the associated SV solid is the subject
of this Letter.

Here we will show that for H � 0, the elastic proper-
ties of the resulting SV solid differ dramatically and quali-
tatively from those of a conventional Abrikosov lattice.
The key underlying difference is the vanishing of the tilt
modulus, which is guaranteed by the underlying rotational
invariance (but see below). Although this invariance is
broken by the magnetization, M, the tilt modulus remains
zero because this breaking is spontaneous. This contrasts
strongly with a conventional vortex solid, where the rota-
tional symmetry is explicitly broken by the applied field
H. All of our conclusions, e.g., the unusual B�H� relation
illustrated in Fig. 1, are a direct consequence of this im-
portant observation.

In particular, we find that this “softness” (i.e., vanish-
ing tilt modulus) of the SV lattice drastically enhances the
effects of quenched disorder. As in conventional vortex
lattices [4], any amount of disorder DV , however weak, is
sufficient to destroy translational order in SV lattices. Here
the finite ordered domains are divergently anisotropic, with
dimensions j

L
� ~ 1�D

2�3
V and jL

z ~ 1�D
1�3
V . These lengths

are measurable in scattering and transport measurements.
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Unlike conventional lattices, however, in SV lattices the
disorder also qualitatively alters the elastic behavior at long
distances, leading to “anomalous elasticity”: a universal
scaling of elastic moduli with wave vector k out to arbi-
trarily long length scales, with some elastic moduli vanish-
ing, and others diverging, as wave vector k ! 0 [5]. This
behavior is characteristic of a new kind of topologically
ordered “columnar elastic glass”(CEG) phase of vortices,
which is stable, for weak disorder, against proliferation of
dislocations.

The best way to experimentally probe a spontaneously
broken symmetry is to break it directly with an external
field. We predict that as a consequence of the anomalous
elasticity, the increase in the magnetic induction, dB�H� �
B�H� 2 B�0� over the spontaneous induction B�0�, due
to a weak applied field H along M obeys a universal

HH cr.

B0

H NL

B

B ~ Hαδ

non-Hookean 
   elasticity

FIG. 1. The nonlinear and universal power-law B�H� scaling,
which at weakest fields H , Hcr and strongest fields H . HNL
is cut off by the crystal symmetry breaking anisotropy and jNL,
respectively.
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“non-Hookean” scaling law:

dB�H� ~ jHja , (1)

with the universal exponent a � 0.72 6 0.04, a predic-
tion that should be experimentally testable.
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Whatever the microscopic origin of the novel FS state,
general symmetry principles dictate that the long length
scale phenomenology is described by an effective Landau-
Ginzburg free energy functional
FGL �
Z
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where c is the superconducting order parameter and A
is the electromagnetic vector potential with B � === 3 A.
The constants m, a, b, K, t, and u are experimentally
measurable phenomenological parameters, with a and t
changing their signs at the superconducting and ferromag-
netic decoupled transition temperatures, respectively, and
f0 � hc�2e the elementary magnetic flux quantum.

The above model displays rich phenomenology [3]. It
has been shown in detail by Greenside et al. [3] that for
a range of physically realistic parameters [e.g., lL�j,
lL�

p
K�jtj � O�10� [3], with the large Abrikosov ratio

required for a robust mixed state, and large exchange K
necessary to suppress the competing spiral phase, relative
to the SV state], systems described by FGL, Eq. (2), exhibit
a thermodynamically stable phase consisting of a sponta-
neous (i.e., H � 0) vortex state, in which superconducting
vortices are generated by the spontaneous magnetization of
the ferromagnetic component.

Deep within this state, both c�r� and M�r� are large,
and therefore the London approximation applies. We take
M�r� � M0n̂�r� to be of approximately uniform magni-
tude M0 and fluctuating direction n̂�r�. We also take jc�r�j
to be a constant c0 fi 0, everywhere except at the locations
of the vortices (where c � 0) and allow its phase u�r� to
vary subject to the circulation condition that it increases
by an amount 2p along a closed path enclosing a vortex
[6]. The magnetic induction B�r� is confined to thin flux
filaments defined by the zeros of c. Using the circulation
condition and the minimizing above free energy FGL with
respect to c0, u, and A, we eliminate ===u and B in favor of
vortex line conformational degrees of freedom and obtain

FL �
f

2
0

8p

Z
d3r d3r 0 t�r� ? t�r0�V �jr 2 r0j�
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, (3)

where we have dropped unimportant constant pieces.
t�r� �

P
n

R
ds

drn
ds d3�r 2 rn�s�� is the directed vortex

line density, with magnitude given by the local flux density
(in units of f0) and with direction tangent to the local
vorticity; rn�s� is the locus of the nth vortex line, parame-
trized by an arc length s. The vortex interaction V �r� is
approximately given by the standard expression V �r� �
e2r�lL��4pl

2
Lr�, with l

2
L � mf

2
0��16p3h̄2jc0j

2� [3],
cut off at scales smaller than the coherence length j.

At low temperature T and in the clean limit the vor-
tex lines freeze into a lattice (as has been observed [1]),
directed on average along a spontaneously chosen magne-
tization direction n̂0, which we choose to be the ẑ axis,
and with the lattice constant determined by the average
magnetization M0. Vortex lattice fluctuations are described
by the 2D phonon displacement vector field u�z, Rn�,
defined by rn�z� � ���Xn 1 ux�z, Rn�,Yn 1 uy�z, Rn�, z���,
where Rn � �Xn,Yn� spans the vortex lattice, and we
chose s � z, and by a small 2D vector dn�ẑ defined by
n̂ � �1 2 dn ? dn�1�2ẑ 1 dn.

Integrating out dn and going to the continuum, we ob-
tain [7,8] the effective elastic Hamiltonian:

Hel �
1
2

Z
d3r �kj≠2

zuj
2 1 2mu2

ij 1 lu2
ii� , (4)

where k is the vortex line curvature modulus and m and l

are the Lamé coefficients. m, l, and k are all expressible
in terms of the parameters of the original model Eq. (2),
and uij � 1

2 �≠iuj 1 ≠jui 2 ≠zui≠zuj� is the rotationally
invariant nonlinear strain tensor, with i, j [ x, y. This
form of Hel is strictly dictated by general symmetry con-
siderations, specifically: the underlying rotational symme-
try of the SV solid about any arbitrary axis guarantees that
only the fully rotationally invariant combination uij , given
above, appears and that the vortex line tilt modulus (c44)
vanishes identically (but see below) [8].

Although the softness of the SV lattice suggests, via
the Lindemann criterion, a lower melting temperature,
our long wavelength description cannot directly predict
the melting temperature, because thermal fluctuations are
dominated by short distance modes (near the Brillouin
zone boundary). Instead, here we focus on the much more
interesting, robust, and universal effects of quenched disor-
der, all of which (at long wavelengths) can be incorporated
into our model by adding to Hel

Hdis �
Z

d3r

"
Re

X
G
VG�r�eiG?u�r� 1 h�r� ? ≠zu

#
.

(5)
The first term accounts for the random positional pin-
ning (at reciprocal lattice vectors G) of the vortex
lattice, with VG�r� a complex random pinning po-
tential, whose statistics can be accurately represented
by zero-mean, short-ranged, Gaussian correlations:
VG�r�V �

G0�r0� � DVd
�
GG0dd�r 2 r0� [9]. The second term

reflects the presence of an additional orientational,
tilt disorder. The tilt field h�r� is a random vector
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with short-ranged isotropic spatial correlations, whose
statistics can also be taken zero-mean Gaussian, with
hi�r�hj�r0� � Ddijd

d�r 2 r0� [9]. In the case of magnetic
impurities, it is the random local fields, acting on M, i.e.,
h�r� ? n̂, which via the Higg’s mechanism, dn � ≠zu,
lead to the tilt disorder piece of Hdis. In the case of
nonmagnetic impurities, it is the short-scale anisotropy
in the spatial distribution of vortex line pinning centers,
together with lack of rotational symmetry in the SV state,
that leads to the tilt disorder in Eq. (5), as can be easily
illustrated by short-scale modes thinning procedure [8].
(As in conventional vortex lattices, in d . 2, the pinning
of the long-scale vortex density distortions is irrelevant
at long scales.)

Adapting Larkin’s [4] calculation to the “soft” elasticity
of the SV lattice we find that in d dimensions and at short
length scales, mean-squared lattice distortions [in domains

of size L��øLz�] grow as u2
rms � L

9�22d
� . Hence,

translational order is destroyed for d � 3 , dDV
c � 9�2,

implying (in the weak disorder limit) divergently
anisotropic Larkin domains spanned by 3D Larkin lengths
LL

� � �a2�kB7
s �1�4�DV �2�3 and LL

z � �a2kBs�DV �1�3,
with a the vortex spacing, s [ L,T , and BL � 2m 1 l,
BT � m. Beyond these Larkin length scales, the Larkin
approximation breaks down and the full nonlinear nature
of the random-field pinning potential must be taken into
account, leading to much more weakly (specifically,
logarithmically) divergent lattice fluctuations as in con-
ventional vortex lattices [10]. This weak divergence is
completely overwhelmed for d , duc � 7�2 by the far
stronger fluctuations induced by the tilt disorder, which

diverge algebraically: u2
rms � L

7�22d
� (ignoring nonlinear

elastic effects) out to arbitrarily long length scales
[8,9,11,12].

Ignoring nonlinear elastic terms, we obtain the disorder-
averaged phonon correlation function Cs�r� �
Max�D��k3B5

s�1�4r
7�22d
� , D��k52dBd21

s �1�2z722d� 3O�1�.
The spatial (Larkin-like) correlation lengths, measur-
able in neutron scattering experiments, are defined
by Cs�Min�j�, jz�� � a2 and are given by j� �
�a2�k3B5

s�1�4�D�1��7�22d�, jz � j
1�2
� �k�Bs�1�4. Hence,

in 3D, in the presence of arbitrarily weak disorder D, on
length scales longer than j�,z the translational order of
SV solid decays rapidly; that is, it is short ranged. This,
however, does not imply that the system is equivalent
to the SV liquid state, or to a fully disordered vortex
glass as it would be if dislocation loops unbound. Using
duality methods, introduced recently by two of the authors
[9], we have shown that a translationally disordered, but
topologically ordered CEG phase is, in fact, possible in
3D. This is analogous to our recent results in the context
of randomly pinned smectic liquid crystals [9,11] and
columnar phase of discotic liquid crystals [12] confined
in aerogel, as well as the Bragg glass conjecture for
conventional vortex lattices [13] and the random field XY
model [14].
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In this topologically ordered phase the anharmonic
elastic terms in the Hamiltonian lead to drastically
modified elastic scaling on length scales longer than the
nonlinear crossover length scales j

z
NL � 8p2k2�D and

j
�
NL � �jz

NL�2�Bs�k�1�2. In renormalization group (RG)
language, on scales longer than j

z,�
NL , our system flows

away from a zero-disorder Gaussian fixed point and ap-
proaches a nontrivial T � 0 anharmonic, disordered fixed
point. This new fixed point can be studied using standard
RG analysis [9], and we predict that at scales longer than
j
z,�
NL , out to an arbitrary length scale (but see below),

the elastic moduli k, m, l, and the disorder variance D

become singular functions of wave vector k [5]:

k�k� � k0�kzjz
NL�2hkfk���k�j�

NL��kzjz
NL�z ��� , (6a)

m�k� � m0�kzjz
NL�hmfm���k�j�

NL��kzjz
NL�z ��� , (6b)

l�k� � g�m0�kzjz
NL�hmfm���k�j�

NL��kzjz
NL�z ��� , (6c)

D�k� � D0�kzjz
NL�122hkfD���k�j�

NL��kzjz
NL�z ��� , (6d)

where fk�m�D�x� is independent of x if x ø 1 and goes
like x to the power 2hk�z , hm�z , and �1 2 2hk ��z ,

respectively, when x ¿ 1, so that, e.g., k�k� ~ k
2hk�z
�

for k�j
�
NL ¿ �kzjz

NL�z . k0, m0, and D0 are the bare
values of the elastic constants and the anomalous expo-
nents are universal, and to leading order in e �

7
2 2 d

are given by hk � 1.478e � 0.74 and hm � 0.6919e �
0.346, where the second equalities are their values in 3D.
The constant g� is also universal, and to leading order in e

g� � 20.032 72 1 O�e�. The anisotropy exponent z �
2 2 �hk 1 hm��2, and therefore the two independent ex-
ponents hk and hm completely characterize the anoma-
lous elasticity, with k�k� and D�k� diverging with linearly
related exponents, and m�k� and l�k� both vanishing in
exactly the same way as k ! `. The negative univer-
sal amplitude ratio g� implies that the SV glass exhibits a
negative universal Poisson ratio sp � 20.0338 1 O�e�.

For length scales longer than jNL this strong, power-law
anomalous elasticity will alter the behavior of all physi-
cal observables of the SV solid, such as, e.g., the width
of the structure function peak S�k� measured in neutron
scattering and the behavior in its tails. It also leads to a
non-Hookean, i.e., nonlinear, stress-strain relation even for
arbitrarily small applied stress s.

To see this, consider a purely compressive stress, sij �
sdij, which adds a term s=== ? u � suii 1

1
2 j≠zuj2 to

the Hamiltonian. In Fourier space, the second, symmetry
breaking, term becomes sk2

z ju�k�j2 and begins to domi-
nate over the k�k�k4

z ju�k�j2 term once sk2
z $ k�k�k4

z .
This clearly happens for kz’s less than a critical kc
given by sk2

c � k�kz � kc, k� � 0�k4
c . Using Eq. (6a)

for k�k� in this expression and solving for kc, we find
kc�s� � �s�k0�1��22hk��jz

NL�hk��22hk�.
Now, for sufficiently weak stress s, 1�j

z
NL ¿ kc�s�,

the stress-induced rotational symmetry breaking term is
subdominant to the vortex curvature energy k�k�k4

z ju�k�j2
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for wave vectors kz ¿ kc�s�. Consequently, on inter-
mediate length scales, kc�s� , kz , kzNL, the SV glass
exhibits anomalous elasticity summarized by Eqs. (6).
However, on longer length scales, kz ø kc�s�, the
applied stress energy dominates, suppressing fluctua-
tions and cutting off the anomalous elasticity at kc�s�.
Therefore, the elastic moduli saturate, for kz ø kc�s�, at
their values at kz � kc�s�, k� � 0 given by Eq. (6), i.e.,
m�k ! 0� ! m�kz � kc, k� � 0� ~ k

hm

c and l�k ! 0� !
l�kz � kc, k� � 0� ~ k

hm

c . This implies that the Young’s
modulus Y�s� � 4m�m 1 l���2m 1 l� � 4m0�1 1 g���
�2 1 g�� �kcjz

NL�hm � 2m0�kcjz
NL�hm � 2m0�s�sNL�b,

with s ø sNL, b � hm��2 2 hk�, and sNL � k0j
22
NL.

Hence, we find for stress s # sNL, a nonlinear (non-
Hookean)strain-stress relation: ec�s� � === ? u � s�Y�s� ~
sa , with a � 1 2 b � 1 2 hm��2 2 hk� � 0.72.

Now, it is easy to see that H � Hẑ, applied along the di-
rection of the SV lattice, acts as a compressive stress, s �
HB�0�, and the induced dB�H� � B�H� 2 B�0� plays the
role of the compressive strain, ec � dB�B�0�. Hence
H allows us to directly probe the anomalous elasticity,
with the non-Hookean elasticity leading to the nonlinear
and universal B�H� relation, for H , HNL � sNL�B�0�,
given in Eq. (1) and Fig. 1.

Of course, as with all crystalline ferromagnets,
crystalline symmetry breaking fields will explicitly
break rotational invariance, even in the absence of
H. They will lead to a nonzero tilt modulus, i.e., a
term 1

2Vcrj≠zuj2 in the Hamiltonian, which will cut off
the anomalous elasticity on length scales longer than
jz

cr � � k0

Vcr
�1��22hk ��jz

NL�2hk��22hk�. For weak Vcr, our
predictions will apply over a wide range of length scales
Lz,� satisfying jz,�

cr ¿ Lz,� ¿ j
z,�
NL . On longer length

scales the SV solid elasticity will cross over to the conven-
tional “tension” elasticity of vortex lattices [6], exhibiting
a linear relation dB ~ H, for H , Hcr � Vcr�B�0�.

The crystal anisotropy also leads to metastability for
jHj , Hcr, thereby allowing experimental studies of H
applied in the direction opposite to that of M. In the
limit jHj ! Hcr, the vortex solid becomes soft again,
with the crystal-field generated tilt modulus vanishing as
Hcr 2 jHj, and the system exhibiting anomalous elasticity
out to arbitrary length scale at this finely field-tuned point.
However, because the rotational symmetry is neverthe-
less broken [with restoration only at the quadratic �≠zu�2

level], we expect that the universality class and therefore
the anomalous exponents will be distinct from that of the
CEG studied here [8].

As argued in the case of vanishing crystal anisotropy,
here, too, the anomalous elasticity leads to a nontrivial
field dependence of the Young’s modulus. We find Y�H� ~

�Hcr 2 jHj�b0

, with b0 . 0 a universal exponent analo-
gous to, but distinct from, the b of the CEG. However,
in contrast to the rotationally invariant case, here the flux
density dB�H� � H�Y�H� � H�Hcr 2 jHj�2b 0

diverges
as jHj approaches Hcr from below. This signals a break-
027001-4
down of the analysis, which assumes dB�H� ø B�0�, and
suggests that the metastability limit occurs at fields Hms

determined by dB�Hms� � B�0�.
Finally, we note that ErNi2B2C has a strong uniaxial

anisotropy, with M preferentially lying in a nearly isotropic
xz plane. The appropriate model in this case resembles
that given by Eq. (4), except that in the strain tensor uij ,
ui ! ux , and uy has a conventional quadratic, tension elas-
ticity. A similar model has recently been considered by us
in the context of the columnar phase of discotics confined
in an anisotropic random medium, such as, e.g., strained
aerogel [12]. The resulting “m � 1 elastic glass” phase
is also topologically stable with anomalous elasticity, and
has additional interesting features, most notably that it ex-
hibits short-ranged translational order in one direction (x)
and quasi-long-ranged translational order in the other ( y),
a prediction that should be testable via neutron scattering
and decoration experiments. We conclude by noting that
the soft elasticity of the SV solid should also manifest it-
self in many other physical observables, most notably in
dynamics, exhibiting novel current-voltage characteristics
and enhanced critical currents, sensitive to and with non-
trivial dependence on H.
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