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Devil’s Staircase in the Magnetoresistance of a Periodic Array of Scatterers
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The nonlinear response to an external electric field is studied for classical noninteracting charged
particles under the influence of a uniform magnetic field, a periodic potential, and an effective friction
force. We find numerical and analytical evidence that the ratio of transverse to longitudinal resistance
forms a Devil’s staircase. The staircase is attributed to the dynamical phenomenon of mode-locking.
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The electron transport in two-dimensional periodic
arrays of scatterers has been actively studied for the
last decade. One of the most interesting features is the
plateaulike behavior in Hall resistance as well as peaks in
magnetoresistance [1,2] at low magnetic fields below the
quantum Hall regime. The peak structure in magnetoresis-
tance has been attributed to the electron cyclotron orbits
which enclose an integer number of scatterers [2,3]. The
cyclotron motion is important when the electron mean free
path l (l is measured in the absence of periodic scatterers)
is greater than the period a of the regular scatterers.

In this Letter, we present a theory for electron trans-
port in the deeply diffusive regime l ø a where cyclotron
motion is not relevant. We predict a new and interest-
ing effect where the structure in the magnetoresistance is
associated with fractional numbers. We will show that
the relative ratio between the transversal and longitudinal
magnetoresistance forms a Devil’s staircase. These fractal
staircases originate from a dynamical phenomenon known
as mode-locking which appears naturally in the context of
circle maps [4]. Our prediction is based on the finding
that the dynamics in a two-dimensional periodic array of
scatterers with intrinsic momentum relaxation effectively
reduces to a circle map.

Let us consider first a particle of mass m, charge q
in crossed electric (E � Ex̂), and magnetic fields (B �
2Bẑ) with intrinsic momentum relaxation. The resulting
drift motion x�t� � �x�t�, y�t�� can be described by adding
a frictional force, proportional to the drift velocity y, to the
equations of motion yielding

�x � yx , m �yx � 2qByy 1 qE 2 myx�t ,

�y � yy , m �yy � qByx 2 myy�t ,
(1)

with t being the momentum relaxation time. Cyclotron
motion exists only for a transient time; each trajectory
finally converges to a straight line with the time-averaged
velocity �y� � �m�t, qB�qE��q2B2 1 m2�t2�. With the
charge density n and the current density J � qn�y�, it
is easy to calculate the resistivities defined by E � r̂J
and Onsager’s relations rxx � ryy and ryx � 2rxy: the
diagonal resistivity rxx � m�q2nt is constant, whereas
the off-diagonal resistivity rxy � B�qn depends linearly
on the magnetic field —no plateaus are present.
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We now add a periodic potential V � V0F�x� with jFj

of order one to the equations of motion (1), assuming that
the periodicity of the potential, a, is much larger than the
length scale related to the intrinsic momentum relaxation.
When we scale the coordinates x with a and the time t
with t, we get the same equations of motion for a given
set of three dimensionless parameters: B̃ � qtB�m, Ẽ �
qt2E��ma�, and Ṽ0 � V0��qEa�. We use the rescaled
magnetic field B̃ as a variable parameter and fix the
rescaled electric field and potential strength to Ẽ � 0.07
and Ṽ0 � 0.12 if not otherwise stated. Though we could
choose various sets of parameters (t, a, E, etc.) for the
chosen values of Ẽ and Ṽ0, for definiteness we will take
t � 7.6 3 10214 s, E � 22.3 3 104 V�cm, and a �
0.5 mm, and fix these for the rest of the paper. The par-
ticle is an electron in GaAs sample with q � 2e and
m � 0.067me. By taking a typical value of Fermi velocity
yf � 3 3 107 cm�s, the mean free path of our system is
l � yft � 0.02 mm ø a.

First, we show how the particle’s motion is related to
a one-dimensional circle map through analytical consider-
ations for sufficiently small potential strength. Note that
our numerics do not rely on this requirement. Because
of the periodicity of the potential it is sufficient to con-
sider the unit cell of the potential with periodic bound-
ary conditions; i.e., we can compactify the �x, y� plane
to a two-dimensional torus. A typical asymptotic solu-
tion for zero potential strength as discussed above appears
here as a quasiperiodic trajectory filling densely a two-
dimensional invariant torus y � const in four-dimensional
phase space. Trajectories starting away from the torus are
attracted towards it and asymptotically converge onto it.
For finite potential strength the torus is smoothly deformed
or collapsed into lower-dimensional objects or broadened
to a higher-dimensional object (loosely speaking, a torus
with finite but very small thickness). The latter possibil-
ity can be ignored to a very good approximation as we
will see later. A point on the torus (and on the lower-
dimensional objects) is uniquely labeled by unit-cell coor-
dinates �x1 mod 1, x2 mod 1� defined by x � x1a1 1 x2a2,
with a1 � �a11, a12�, a2 � �a21, a22� being the lattice vec-
tors of the unit cell. The long-time behavior is there-
fore completely described by two-dimensional dynamics
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�x1�t�, x2�t��. As usual, such dynamics can be conveniently
investigated by introducing Poincaré surfaces of section
defined by x1�tn� mod 1 � 0, where n is an integer and
modulo 1 restricts the variable to the interval �0, 1�.

The discrete evolution of x2,n 	 x2�tn� is then gov-
erned by a one-dimensional map x2,n11 � f�x2,n� where
f is a smooth and monotonic function. Because of the
periodicity of the potential the condition f�x2� mod 1 �
f�x2 mod 1� holds. Such a map is called an invertible circle
map. Its rotation number,

r 	 lim
n!`

x2,n 2 x2,0

n
, (2)

is well defined and independent of the initial condition
x2,0 [4]. A rational value of r � p�q (p and q are in-
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tegers without common divisor) indicates periodic motion,
whereas an irrational value indicates quasiperiodic motion;
chaotic motion is not possible.

We now derive a simplified circle map valid in the limit
Ṽ0 ø 1. If Ṽ0 � 0 then the asymptotic dynamics obeys
�yx � �yy � 0, leading to f�x2� � x2 1 r0 with the con-
stant r0�B̃�; here we have simply r � r0, so r0 can be
regarded as the unperturbed rotation number. The asymp-
totic dynamics for nonzero but sufficiently small Ṽ0 is
overdamped, i.e., j �yxj ø jyx j�t and j �yyj ø jyy j�t. As
in the potential-free case, the number of differential equa-
tions reduces to two, enabling us to determine f up to first
order in Ṽ0

f�x2,n; r0, Ẽ, Ṽ0� � x2,n 1 r0 1 Ṽ0g�x2,n; r0� (3)

with
g �
r

2
0�a2

22 1 a2
21� 1 2r0�a11a21 1 a12a22� 1 a2

12 1 a2
11

�a11a22 2 a21a12�2

Z 1

0

µ
a21

≠F
≠x1

2 a11
≠F
≠x2

∂ Ç
x2�r0x11x2,n

dx1 , (4)

where g is a nontrivial periodic function of x2,n. Note that f is independent of the parameter Ẽ in the present approxi-
mation. Using Stoke’s theorem it can be shown that

R1
0 g dx2 � 0. For circle maps of the form given in Eq. (3) with the

above-mentioned properties of g it is proven that for each Ṽ0 there exists a Devil’s staircase, a monotonically increasing
function r � r�r0� with plateaus at each rational value of r. The width of the plateaus, Dr0, is proportional to Ṽ0 [5].
Similarly, the widths of the plateaus, DB̃, of the function r � r�B̃�, are proportional to Ṽ0 since DB̃ � �dB̃�dr0�Dr0.

The rotation number r is directly related to the continuous-time dynamics. This can be seen by rewriting Eq. (2) with
y � y1a1 1 y2a2 as

r �
�y2�
�y1�

�
2a12 1 a11�yy���yx�
a22 2 a21�yy���yx�

�
2a12 1 a11sxy�sxx

a22 2 a21sxy�sxx
. (5)

Hence, r is given by the ratio of the conductivities. In the case that the periodic potential is invariant under p�m
rotations, m � 2, 3, . . . , Onsager’s relations show that r can also be expressed by the ratio rxy�rxx .

We now present numerical evidence showing that for finite Ṽ0 & 0.4 the continuous-time dynamics is indeed given by
a one-dimensional circle map and that the magnetoresistance shows a fractal structure. As an example of the periodic
scatterers, we take a potential with hexagonal symmetry shown in Fig. 1a,
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p

with b � 8. The lattice vectors are a1 � � 3, 0� and
a2 � �2

p
3�2, 23�2�. We have used the Runge-Kutta

method [6] with 106 time steps of variable size to inte-
grate the equations of motion. We found that all initial
conditions, for fixed parameters, lead to the same mean
velocity �y�. So only one single orbit is needed to cal-
culate the current density and the resistivities without em-
ploying the Kubo formula [7]. This already indicates the
collapse to an invertible circle map. To show the reduc-
tion to the map explicitly, we calculate a sequence of
points �x2,n mod 1, x2,n11 mod 1� by solving the complete
set of differential equations for different initial velocities
from one Poincaré section to the next. Figures 2a and
2b show that these points indeed lie very close to a line,
so x2,n11 is to excellent approximation a function of x2,n
independent of the initial velocity. We have computed
�x2,n11 2 x2,n 2 r0��Ṽ0 for different parameters Ṽ0 and
Ẽ. It can be seen from Fig. 2c that this quantity is roughly
independent of Ṽ0, even though small deviations indicate
weak nonlinear behavior in Ṽ0. Figure 2d shows that
�x2,n11 2 x2,n 2 r0��Ṽ0 does not change when Ẽ is var-
ied over 2 orders of magnitude. Figures 2a–2d therefore
confirm the reduction to the circle map and its parameter
dependence as predicted in Eq. (3).

Figure 3 is our main result. It shows the Devil’s
staircase r vs r0. Both quantities are computed from the
resistivities via the relations r � 2��1 1

p
3 rxx�rxy�

and r0 � 2��1 2
p

3�B̃� from Eq. (5) with the lattice
vectors of the rotational symmetric potential (6). Note the
exactness of the plateaus. Let us discuss some features
of the Devil’s staircase in relation to the continuous and
discrete-time dynamics. Figures 1b and 1c show two
orbits moving in slightly different magnetic fields. Both
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FIG. 1. (a) Contour plot of the potential in Eq. (6) with
b � 8. (b) Orbit with B � 8.7 T and r � 1 in the unit cell.
(c) B � 9.77 T and r � 1. (d) 9.8 T and r � 1.014 07 . . . .
(e) 2.9 T and r � 1�2. (f) 4.4 T and r � 2�3.

have synchronized velocities �y1� � �y2�, i.e., r � 1.
Each orbit with r � 1 is a stable fixed point x�

2 � f�x�
2 �

in the corresponding map (filled circles in Figs. 2a and
2b; empty circles mark unstable fixed points). This syn-
chronization phenomenon, usually called mode-locking in
nonlinear dynamics, is therefore due to the robustness of
fixed points under variation of a parameter, here r0�B�.
Orbits with r fi 1 are in a different mode; in particular,
orbits with irrational rotation number are not periodic.
In Fig. 1d we see an orbit with irrational r close to
one. It stays for a long time near a periodic orbit with
r � 1 but from time to time it escapes, thereby filling
the entire unit cell densely. This phenomenon is often
called intermittency in chaotic dynamics [8]. In terms of
the circle map, the transition from r � 1 to irrational r

is a saddle-node bifurcation: as B is varied, stable and
unstable fixed points come closer and closer as illustrated
in Figs. 2a and 2b, and finally destroy each other, yielding
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FIG. 2. (a) x2,n11 mod 1 vs x2,n for B � 8.7 T. (b) 9.77 T.
(c) �x2,n11 2 x2,n 2 r0��Ṽ0 vs x2,n for B � 8.7 T, Ṽ0 � 0.12,
and Ẽ � 0.07 (solid line); Ṽ0 � 0.06 (dotted line); Ṽ0 � 0.03
(dashed line). (d) Ṽ0 � 0.12, and Ẽ � 0.07 (solid line); Ẽ �
0.007 (dotted line); Ẽ � 0.0007 (dashed line).
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FIG. 3. Rotation number r vs r0. Arrows assign the rational
value of the rotation number r � p�q to each plateau. The
inset highlights the fractal structure of the Devil’s staircase.

quasiperiodic motion. Varying B further can lead again
to periodic motion. Figures 1e and 1f give two examples
with r � 1�2 and r � 2�3. The corresponding map has
a stable fixed point of higher period, e.g., for r � 1�2 the
fixed point condition is x�

2 � f� f�x�
2 ��.

We also observe a Devil’s staircaselike function rxy�B�
in Fig. 4, which reminds one of the quantum Hall effects
[9,10], but here the “plateaus” are not perfectly flat. One
may note also that the way rxx varies for a number of rxy

plateaus has similarities to the quantum Hall effects: going
from the center of a rxy plateau towards its border, rxx in-
creases and reaches its maximum exactly when the plateau
ends. This can be explained qualitatively. First, note that
an orbit from the center of the r � 1 plateau (Fig. 1b)
avoids the potential’s steep maxima at the corners of the
unit cell. Hence, the diagonal resistivity roughly equals the
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FIG. 4. Off-diagonal resistivity rxy and diagonal resistivity
rxx vs magnetic field B. Arrows assign the rational value of
the rotation number r � p�q to each plateau. We here have
used n � 1012 cm22.
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FIG. 5. Dependence of the r � 1 plateau on Ṽ0; cf. Fig. 4.

potential-free value rxx � m�q2nt � 3.12 kV. We infer
from Figs. 1b and 1c that the closer B is to the border of
the plateau the closer is the orbit to the potential’s maxima.
This effectively slows down the orbit, which explains the
increase of rxx (and rxy). Leaving the plateau reduces rxx

continuously because of the intermittency effect, which
becomes less pronounced with increasing jr 2 1j.

The example in Fig. 5 confirms that the widths of the
plateaus, DB, is roughly proportional to Ṽ0 as predicted
from the analysis of the simplified circle map in Eq. (3).
By noting that Ṽ0 denotes the dimensionless potential
strength we see an interesting analogy with the quantum
Hall effect where the size of plateaus is sensitive to the
disorder strength of the systems [11]. Here we have the
advantage of the use of the simplified circle map to ana-
lyze the plateau size, although the overall structure of the
hierarchy of the plateaus is also too complicated to be
dealt with in an analytic fashion.

Since the particle can be trapped in the very flat lo-
cal minima of the potential (6), a finite dc electric field
is necessary to overcome the potential trap as in the ex-
periment in Ref. [12]. The threshold [13] value ET of
the electric field for the finite electrical current might be
crudely estimated by ET 
 V0��qa�, which is in agree-
ment with our calculations (not shown). However, in re-
ality the threshold electric field will be much smaller in
the presence of the degenerate electron gas because the
weak local trap potential will be screened [14]. While we
have chosen in our numerical calculation a large electric
field (2.3 3 104 V�cm) and a low mobility of the sample
(m � et�m � 2000 cm2�V s), the Devil’s staircase may
be observed in a broad range of parameters. We also
note that the specific form of the potential (6) is not rele-
vant. However, the steepness of the potential influences
the shape of the rxy plateaus. Large steepness (large b)
results in wide and curved rxy plateaus. It should be men-
tioned also that the Devil’s staircase will not be seen in the
026803-4
conventional Hall bar where the electrical current is fixed
along the bar and the induced Hall voltage is measured. To
measure the electrical current in two-dimensional samples
for fixed applied voltages, one needs to use metallic leads
which span the entire length of two opposite edges of the
sample [14].

In summary, we have calculated the magnetoresistance
of a lateral surface superlattice with strong momentum re-
laxation where the cyclotron motion is not involved. Our
calculations show a fractal plateau structure in the magne-
toresistance which stems from purely classical nonlinear
dynamics. We have explained our calculational results in
terms of the theory of circle maps where the Devil’s stair-
case is already well understood.
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